Rh-catalysed enantioselective [2+2+1] cycloaddition reactions using three different 2π-components

Matton, P., Huvelle, S., Haddad, M., Phansavath, P. & Ratovelomanana-Vidal, V. Recent progress in metal-catalyzed [2+2+2] cycloaddition reactions. Synthesis 54, 4–32 (2022).Article 
CAS 

Google Scholar 
Pla-Quintana, A. & Roglans, A. Chiral induction in [2+2+2] cycloaddition reactions. Asian J. Org. Chem. 7, 1706–1718 (2018).Article 
CAS 

Google Scholar 
Amatore, M. & Aubert, C. Recent advances in stereoselective [2+2+2] cycloadditions. Eur. J. Org. Chem. 2015, 265–286 (2015).Article 
CAS 

Google Scholar 
Tanaka. K. et al. Transition-Metal-Mediated Aromatic Ring Construction (ed. Tanaka, K.) 1–298 (Wiley, 2013).Tanaka, K. Transition-metal-catalyzed enantioselective [2+2+2] cycloadditions for the synthesis of axially chiral biaryls. Chem. Asian J. 4, 508–518 (2009).Article 
CAS 
PubMed 

Google Scholar 
Preethalayam, P. et al. Recent advances in the chemistry of pentafulvenes. Chem. Rev. 117, 3930–3989 (2017).Article 
CAS 
PubMed 

Google Scholar 
Moran, G., Green, M. & Orpen, A. G. Formation of a fulvene by trimerisation of an alkyne at a rhodium centre, crystal structure of cycloocta-1,5-diene(η5-1,3,6-tri-t-butylfulvene) rhodium hexafluorophosphate. J. Organomet. Chem. 250, C15–C20 (1983).Article 
CAS 

Google Scholar 
Wen, T.-B. et al. Coupling reactions of an allenylcarbene complex with alkynes and styrene. Eur. J. Inorg. Chem. 2007, 2693–2701 (2007).Article 

Google Scholar 
Adams, H., Brown, P., Cook, E. S., Hanson, R. J. & Morris, M. J. Oligomerisation of phenylacetylene to coordinated 2,3,6-triphenylfulvene in molybdenum tetracyclone complexes. Organometallics 31, 7622–7624 (2012).Article 
CAS 

Google Scholar 
Johnson, E. S., Balaich, G. J., Fanwick, P. E. & Rothwell, I. P. Trimerization of tert-butylacetylene to 1,3,6-tri(tert-butyl)fulvene catalyzed by titanium aryloxide compounds. J. Am. Chem. Soc. 119, 11086–11087 (1997).Article 
CAS 

Google Scholar 
Radhakrishnan, U., Gevorgyan, V. & Yamamoto, Y. Palladium catalyzed [2+2+1] cyclotrimerization of alkynes: selective synthesis of fulvenes. Tetrahedron Lett. 41, 1971–1974 (2000).Article 
CAS 

Google Scholar 
O’Connor, J. M. et al. [2+2+1] Alkyne cyclotrimerizations: a metallacyclopentadiene route to fulvenes. J. Am. Chem. Soc. 119, 3631–3632 (1997).Article 

Google Scholar 
Shibata, Y. & Tanaka, K. Catalytic [2+2+1] cross-cyclotrimerization of silylacetylenes and two alkynyl esters to produce substituted silylfulvenes. Angew. Chem. Int. Ed. 50, 10917–10921 (2011).Article 
CAS 

Google Scholar 
Lee, G. C. M., Tobias, B., Holmes, J. M., Harcourt, D. A. & Garst, M. E. A new synthesis of substituted fulvenes. J. Am. Chem. Soc. 112, 9330–9336 (1990).Article 
CAS 

Google Scholar 
Peng, S. et al. Palladium(II)-catalyzed oxidative decarboxylative [2+2+1] annulation of cinnamic acids with alkynes: access to polysubstituted pentafulvenes. Org. Lett. 22, 5589–5593 (2020).Article 
CAS 
PubMed 

Google Scholar 
Quan, Y., Zhang, J. & Xie, Z. Three-component [2+2+1] cross-cyclotrimerization of carboryne, unactivated alkene, and trimethylsilylalkyne co-mediated by Zr and Ni. J. Am. Chem. Soc. 135, 18742–18745 (2013).Article 
CAS 
PubMed 

Google Scholar 
Zhang, J., Quan, Y., Lin, Z. & Xie, Z. Insight into reaction mechanism of [2+2+1] cross-cyclotrimerization of carboryne with alkene and trimethylsilylarylalkyne mediated by nickel complex. Organometallics 33, 3556–3563 (2014).Article 
CAS 

Google Scholar 
Nunes, P. S. G., Vidal, H. D. A. & Corrêa, A. G. Recent advances in catalytic enantioselective multicomponent reactions. Org. Biomol. Chem. 18, 7751–7773 (2020).Article 
CAS 
PubMed 

Google Scholar 
De Graaff, C., Ruijter, E. & Orru, R. V. A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev. 41, 3969–4009 (2012).Article 
PubMed 

Google Scholar 
Shibata, Y. & Tanaka. K. in Rhodium Catalysis in Organic Synthesis: Methods and Reactions (ed. Tanaka, K.) 183–228 (Wiley, 2019).Shibata, Y. & Tanaka, K. Rhodium-catalyzed [2+2+2] cycloaddition of alkynes for the synthesis of substituted benzenes: catalysts, reaction scope, and synthetic applications. Synthesis 44, 323–350 (2012).Article 
CAS 

Google Scholar 
Hara, J., Ishida, M., Kobayashi, M., Noguchi, K. & Tanaka, K. Highly chemo-, regio-, and enantioselective rhodium-catalyzed cross-cyclotrimerization of two different alkynes with alkenes. Angew. Chem. Int. Ed. 53, 2956–2959 (2014).Article 
CAS 

Google Scholar 
Yoshida, T. et al. Rhodium-catalyzed [3+2+2] and [2+2+2] cycloadditions of two alkynes with cyclopropylideneacetamides. Angew. Chem. Int. Ed. 54, 8241–8244 (2015).Article 
CAS 

Google Scholar 
Fujii, K. et al. Stereoselective cyclohexadienylamine synthesis through rhodium-catalysed [2+2+2] cyclotrimerization. Nat. Synth. 1, 365–375 (2022).Article 

Google Scholar 
Shimotsukue, R., Fujii, K., Sato, Y., Nagashima, Y. & Tanaka, K. Rhodium-catalyzed chemo-, regio-, diastereo-, and enantioselective intermolecular [2+2+2] cycloaddition of three unsymmetric 2π components. Angew. Chem. Int. Ed. 62, e202301346 (2023).Article 
CAS 

Google Scholar 
Pounder, A., Neufeld, E., Myler, P. & Tam, W. Transition-metal-catalyzed domino reactions of strained bicyclic alkenes. Beilstein J. Org. Chem. 19, 487–540 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kumar, S. V., Yen, A., Lautens, M. & Guiry, P. J. Catalytic asymmetric transformations of oxa- and azabicyclic alkenes. Chem. Soc. Rev. 50, 3013–3093 (2021).Article 

Google Scholar 
Sihag, P. & Jeganmohan, M. Recent advances in transition-metal-catalyzed C–H functionalization reactions involving aza/oxabicyclic alkenes. Synthesis 53, 3249–3262 (2021).Article 
CAS 

Google Scholar 
Rayabarapu, D. K. & Cheng, C. H. New catalytic reactions of oxa-and azabicyclic alkenes. Acc. Chem. Res. 40, 971–983 (2007).Article 
CAS 
PubMed 

Google Scholar 
Lautens, M., Fagnou, K. & Hiebert, S. Transition metal-catalyzed enantioselective ring-opening reactions of oxabicyclic alkenes. Acc. Chem. Res. 36, 48–58 (2003).Article 
CAS 
PubMed 

Google Scholar 
Nishimura, T., Kawamoto, T., Sasaki, K., Tsurumaki, E. & Hayashi, T. Rhodium-catalyzed asymmetric cyclodimerization of oxa- and azabicyclic alkenes. J. Am. Chem. Soc. 129, 1492–1493 (2007).Article 
CAS 
PubMed 

Google Scholar 
Allen, A., Marquand, P. L., Burton, R., Villeneuve, K. & Tam, W. J. Rhodium-catalyzed asymmetric cyclodimerization of oxabenzonorbornadienes and azabenzonorbornadienes: scope and limitations. J. Org. Chem. 72, 7849–7857 (2007).Article 
CAS 
PubMed 

Google Scholar 
Fan, B.-M. et al. Ligand-controlled enantioselective [2+2] cycloaddition of oxabicyclic alkenes with terminal alkynes using chiral iridium catalysts. Org. Lett. 12, 304–306 (2010).Article 
CAS 
PubMed 

Google Scholar 
Sawano, T., Ou, K., Nishimura, T. & Hayashi, T. Cobalt-catalyzed asymmetric addition of silylacetylenes to oxa- and azabenzonorbornadienes. Chem. Commun. 48, 6106–6108 (2012).Article 
CAS 

Google Scholar 
Long, Y., Jiang, H., Zou, Z., Chen, K. & Fang, Y. Platinum-catalyzed asymmetric ring-opening reaction of oxabenzonorbornadiene with terminal alkynesa. Chin. J. Chem. 32, 613–618 (2014).Article 
CAS 

Google Scholar 
Yang, Q.-J., Choy, P. Y., Fan, B.-M. & Kwong, F. Y. Enantioselective hydroalkynylation of non-polar carbon–carbon double bonds: iridium-catalyzed asymmetric addition reaction of terminal alkyne C–H bonds to substituted norbornadienes. Adv. Synth. Catal. 357, 2345–2350 (2015).Article 
CAS 

Google Scholar 
Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).Article 
CAS 
PubMed 

Google Scholar 
Calvo-Martín, G. et al. Norbornene and related structures as scaffolds in the search for new cancer treatments. Pharmaceuticals 15, 1465–1488 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Ni, J.-X. et al. Rhodium-catalyzed asymmetric [2+2+2] cycloaddition reactions of 1,6-enynes and oxabenzonorbornadienes. Adv. Synth. Catal. 361, 3543–3547 (2019).Article 
CAS 

Google Scholar 
Meißner, A. et al. In situ synthesis of neutral dinuclear rhodium diphosphine complexes [{Rh(diphosphine)(μ2-X)}2]: systematic investigations. ChemPlusChem 80, 169–180 (2015).Article 

Google Scholar 
Yamada, Y. & Tsuboura, T. Circularly polarized luminescence of palladium(0) complexes bearing chiral diphosphines. Chem. Lett. 52, 144–147 (2023).Article 
CAS 

Google Scholar 
Sperrle, M., Gramlich, V. & Consiglio, G. Synthesis and characterization of cationic palladium (6,6′-dimethoxybiphenyl-2,2′-diyl)bis(diphenylphosphine) complexes. Organometallics 15, 5196–5201 (1996).Article 
CAS 

Google Scholar 
Zhang, X. et al. Synthesis of partially hydrogenated 2,2′-bis(diphenylphosphenyl)-1,1′-binaphthyl (BINAP) ligands and their application to catalytic asymmetric hydrogenation. J. Chem. Soc. 1, 2309–2322 (1994).
Google Scholar 
Tanaka, K., Toyoda, K., Wada, A., Shirasaka, K. & Hirano, M. Chemo- and regioselective intermolecular cyclotrimerization of terminal alkynes catalyzed by cationic rhodium(I)/modified BINAP complexes: application to one-step synthesis of paracyclophanes. Chem. Eur. J. 11, 1145–1156 (2005).Article 
CAS 
PubMed 

Google Scholar 
Wang, J. & Dong, G. Palladium/norbornene cooperative catalysis. Chem. Rev. 119, 7478–7528 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shibata, T., Takami, K. & Kawachi, A. Rh-catalyzed enantioselective [2+2] cycloaddition of alkynyl esters and norbornene derivatives. Org. Lett. 8, 1343–1345 (2006).Article 
CAS 
PubMed 

Google Scholar 
Jeedimalla, N., Jacquet, C., Bahneva, D., Tendoung, J.-J. Y. & Roche, S. P. Synthesis of α-arylated cycloalkanones from congested trisubstituted spiro-epoxides: application of the House–Meinwald rearrangement for ring expansion. J. Org. Chem. 83, 12357–12373 (2018).Article 
CAS 
PubMed 

Google Scholar 
Lynam, J. M. Recent mechanistic and synthetic developments in the chemistry of transition-metal vinylidene complexes. Chem. Eur. J. 16, 8238–8247 (2010).Article 
CAS 
PubMed 

Google Scholar 
Roh, S. W., Choi, K. & Lee, C. Transition metal vinylidene- and sllenylidene-mediated catalysis in organic synthesis. Chem. Rev. 119, 4293–4356 (2019).Article 
CAS 
PubMed 

Google Scholar 
Bruneau, C. & Dixneuf, P. H. Metal vinylidenes and allenylidenes in catalysis: applications in anti-Markovnikov additions to terminal alkynes and alkene metathesis. Angew. Chem. Int. Ed. 45, 2176–2203 (2006).Article 
CAS 

Google Scholar 
Liebeskind, L. S. & Chidambaram, R. A formal 4+1 route to alkylidene cyclopentenediones. A synthetic application of the transition-metal-catalyzed terminal alkyne vinylidene rearrangement. J. Am. Chem. Soc. 109, 5025–5026 (1987).Article 
CAS 

Google Scholar 
O’Connor, J. M., Pu, L. & Chadha, R. K. Metallacycle annelation: reaction of a metallacycle α-substituent and a vinylidene ligand to give a bicyclic metallalactone complex. J. Am. Chem. Soc. 112, 9627–9628 (1990).Article 

Google Scholar 
Rajabi, N. A. & McMullin, C. L. DFT calculations bring insight to internal alkyne-to vinylidene transformations at rhodium PNP- and PONOP-pincer complexes. RSC Adv. 11, 11793–11803 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roglans, A., Pla-Quintana, A. & Solà, M. Mechanistic studies of transition-metal-catalyzed [2+2+2] cycloaddition reactions. Chem. Rev. 121, 1894–1979 (2021).Article 
CAS 
PubMed 

Google Scholar 
Tomita, E. et al. An electron-deficient CpE iridium(III) catalyst: synthesis, characterization, and application to ether-directed C–H amidation. Angew. Chem. Int. Ed. 62, e202301259 (2023).Article 
CAS 

Google Scholar 
Mas-Roselló, J., Herraiz, A. G., Audic, B., Laverny, A. & Cramer, N. Chiral cyclopentadienyl ligands: design, syntheses, and applications in asymmetric catalysis. Angew. Chem. Int. Ed. 60, 13198–13224 (2021).Article 

Google Scholar 

Hot Topics

Related Articles