Identification of a pro-protein synthesis osteosarcoma subtype for predicting prognosis and treatment

Aran, V. et al. Osteosarcoma, chondrosarcoma and Ewing sarcoma: Clinical aspects, biomarker discovery and liquid biopsy. Crit. Rev. Oncol. Hematol. 162, 103340. https://doi.org/10.1016/j.critrevonc.2021.103340 (2021).Article 
PubMed 

Google Scholar 
Guo, J. et al. Single-cell profiling of tumor microenvironment heterogeneity in osteosarcoma identifies a highly invasive subcluster for predicting prognosis. Front. Oncol. 12, 732862. https://doi.org/10.3389/fonc.2022.732862 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ferguson, J. L. & Turner, S. P. Bone cancer: Diagnosis and treatment principles. Am. Fam. Phys. 98, 205–213 (2018).
Google Scholar 
Isakoff, M. S., Bielack, S. S., Meltzer, P. & Gorlick, R. Osteosarcoma: Current treatment and a collaborative pathway to success. J. Clin. Oncol. 33, 3029–3035. https://doi.org/10.1200/jco.2014.59.4895 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, Z. Y., Liu, J. B., Wang, X. F., Ma, Y. S. & Fu, D. Current status and prospects of clinical treatment of osteosarcoma. Technol. Cancer Res. Treat. 21, 15330338221124696. https://doi.org/10.1177/15330338221124696 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416. https://doi.org/10.1038/s41576-019-0114-6 (2019).Article 
CAS 
PubMed 

Google Scholar 
Gill, J. & Gorlick, R. Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol. 18, 609–624. https://doi.org/10.1038/s41571-021-00519-8 (2021).Article 
PubMed 

Google Scholar 
Feleke, M. et al. Single-cell RNA sequencing reveals differential expression of EGFL7 and VEGF in giant-cell tumor of bone and osteosarcoma. Exp. Biol. Med. 247, 1214–1227. https://doi.org/10.1177/15353702221088238 (2022).Article 
CAS 

Google Scholar 
Xu, F., Yan, J., Peng, Z., Liu, J. & Li, Z. Comprehensive analysis of a glycolysis and cholesterol synthesis-related genes signature for predicting prognosis and immune landscape in osteosarcoma. Front. Immunol. 13, 1096009. https://doi.org/10.3389/fimmu.2022.1096009 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Somarelli, J. A. et al. A comparative oncology drug discovery pipeline to identify and validate new treatments for osteosarcoma. Cancers 12, 335. https://doi.org/10.3390/cancers12113335 (2020).Article 
CAS 

Google Scholar 
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420. https://doi.org/10.1038/nbt.4096 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902. https://doi.org/10.1016/j.cell.2019.05.031 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Do, V. H. & Canzar, S. A generalization of t-SNE and UMAP to single-cell multimodal omics. Genome Biol. 22, 130. https://doi.org/10.1186/s13059-021-02356-5 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172. https://doi.org/10.1038/s41590-018-0276-y (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gianferante, D. M., Mirabello, L. & Savage, S. A. Germline and somatic genetics of osteosarcoma—Connecting aetiology, biology and therapy. Nat. Rev. Endocrinol. 13, 480–491. https://doi.org/10.1038/nrendo.2017.16 (2017).Article 
CAS 
PubMed 

Google Scholar 
Gene Ontology Consortium. Gene Ontology Consortium: Going forward. Nucleic Acids Res. 43, 1049–1056. https://doi.org/10.1093/nar/gku1179 (2015).Article 
CAS 

Google Scholar 
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353-d361. https://doi.org/10.1093/nar/gkw1092 (2017).Article 
CAS 
PubMed 

Google Scholar 
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
George, B., Seals, S. & Aban, I. Survival analysis and regression models. J. Nucl. Cardiol. 21, 686–694. https://doi.org/10.1007/s12350-014-9908-2 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Mandrekar, J. N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 5, 1315–1316. https://doi.org/10.1097/JTO.0b013e3181ec173d (2010).Article 
PubMed 

Google Scholar 
Iasonos, A., Schrag, D., Raj, G. V. & Panageas, K. S. How to build and interpret a nomogram for cancer prognosis. J. Clin. Oncol. 26, 1364–1370. https://doi.org/10.1200/jco.2007.12.9791 (2008).Article 
PubMed 

Google Scholar 
Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612. https://doi.org/10.1038/ncomms3612 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Xu, Q., Chen, S., Hu, Y. & Huang, W. Landscape of immune microenvironment under immune cell infiltration pattern in breast cancer. Front. Immunol. 12, 711433. https://doi.org/10.3389/fimmu.2021.711433 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, Y. et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322. https://doi.org/10.1038/s41467-020-20059-6 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Walsh, M. C., Takegahara, N., Kim, H. & Choi, Y. Updating osteoimmunology: Regulation of bone cells by innate and adaptive immunity. Nat. Rev. Rheumatol. 14, 146–156. https://doi.org/10.1038/nrrheum.2017.213 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, S. et al. CircDOCK1 promotes the tumorigenesis and cisplatin resistance of osteogenic sarcoma via the miR-339-3p/IGF1R axis. Mol. Cancer 20, 161. https://doi.org/10.1186/s12943-021-01453-0 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kelley, L. M. et al. Pathological fracture and prognosis of high-grade osteosarcoma of the extremities: An analysis of 2847 consecutive cooperative osteosarcoma study group (COSS) patients. J. Clin. Oncol. 38, 823–833. https://doi.org/10.1200/jco.19.00827 (2020).Article 
PubMed 

Google Scholar 
Wu, R. et al. Identification of cell subpopulations and interactive signaling pathways from a single-cell RNA sequencing dataset in osteosarcoma: A comprehensive bioinformatics analysis. Front. Oncol. 12, 853979. https://doi.org/10.3389/fonc.2022.853979 (2022).Article 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barna, M. et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456, 971–975. https://doi.org/10.1038/nature07449 (2008).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bhat, M. et al. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov. 14, 261–278. https://doi.org/10.1038/nrd4505 (2015).Article 
CAS 
PubMed 

Google Scholar 
Harper, J. W. & Bennett, E. J. Proteome complexity and the forces that drive proteome imbalance. Nature 537, 328–338. https://doi.org/10.1038/nature19947 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Filbeck, S., Cerullo, F., Pfeffer, S. & Joazeiro, C. A. P. Ribosome-associated quality-control mechanisms from bacteria to humans. Mol. Cell 82, 1451–1466. https://doi.org/10.1016/j.molcel.2022.03.038 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, Y., Zhang, C., Fang, Q., Zhang, W. & Liu, W. Abnormal signal pathways and tumor heterogeneity in osteosarcoma. J. Transl. Med. 21, 99. https://doi.org/10.1186/s12967-023-03961-7 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Balachandran, V. P., Gonen, M., Smith, J. J. & DeMatteo, R. P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 16, e173–e180. https://doi.org/10.1016/s1470-2045(14)71116-7 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Harrell, F. E., Lee, K. L. & Mark, D. B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15, 361–387. https://doi.org/10.1002/(sici)1097-0258(19960229)15:4%3c361::Aid-sim168%3e3.0.Co;2-4 (1996).Article 
PubMed 

Google Scholar 
Li, T. et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77, e108–e110. https://doi.org/10.1158/0008-5472.Can-17-0307 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ren, N., Liang, B. & Li, Y. Identification of prognosis-related genes in the tumor microenvironment of stomach adenocarcinoma by TCGA and GEO datasets. Biosci. Rep. 40, 980. https://doi.org/10.1042/bsr20200980 (2020).Article 
CAS 

Google Scholar 
Hanahan, D. & Coussens, L. M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322. https://doi.org/10.1016/j.ccr.2012.02.022 (2012).Article 
CAS 
PubMed 

Google Scholar 
Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550. https://doi.org/10.1038/s41591-018-0014-x (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, T. & Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett. 387, 61–68. https://doi.org/10.1016/j.canlet.2016.01.043 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Pratt, H. G., Justin, E. M. & Lindsey, B. A. Applying osteosarcoma immunology to understand disease progression and assess immunotherapeutic response. Adv. Exp. Med. Biol. 1258, 91–109. https://doi.org/10.1007/978-3-030-43085-6_6 (2020).Article 
CAS 
PubMed 

Google Scholar 
Meng, X. et al. Exploiting Ca(2+) signaling in T cells to advance cancer immunotherapy. Semin. Immunol. 49, 101434. https://doi.org/10.1016/j.smim.2020.101434 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lei, K., Kurum, A. & Tang, L. Mechanical immunoengineering of T cells for therapeutic applications. Acc. Chem. Res. 53, 2777–2790. https://doi.org/10.1021/acs.accounts.0c00486 (2020).Article 
CAS 
PubMed 

Google Scholar 
Bruno, T. C. et al. Antigen-presenting intratumoral B cells affect CD4(+) TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol. Res. 5, 898–907. https://doi.org/10.1158/2326-6066.Cir-17-0075 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Horner, A. A., Jabara, H., Ramesh, N. & Geha, R. S. gamma/delta T lymphocytes express CD40 ligand and induce isotype switching in B lymphocytes. J. Exp. Med. 181, 1239–1244. https://doi.org/10.1084/jem.181.3.1239 (1995).Article 
CAS 
PubMed 

Google Scholar 
Li, Z. Potential of human γδ T cells for immunotherapy of osteosarcoma. Mol. Biol. Rep. 40, 427–437. https://doi.org/10.1007/s11033-012-2077-y (2013).Article 
CAS 
PubMed 

Google Scholar 
Le Menn, G., Jabłońska, A. & Chen, Z. The effects of post-translational modifications on Th17/Treg cell differentiation. Biochim. Biophys. Acta. Mol. Cell Res. 1869, 119223. https://doi.org/10.1016/j.bbamcr.2022.119223 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, S. The basic characteristics of extracellular vesicles and their potential application in bone sarcomas. J. Nanobiotechnol. 19, 277. https://doi.org/10.1186/s12951-021-01028-7 (2021).Article 
ADS 
CAS 

Google Scholar 
Brodt, P. & Gordon, J. Anti-tumor immunity in B lymphocyte-deprived mice. I. Immunity to a chemically induced tumor. J. Immunol. 121, 359–362 (1978).Article 
CAS 
PubMed 

Google Scholar 
Qin, Z. et al. B cells inhibit induction of T cell-dependent tumor immunity. Nat. Med. 4, 627–630. https://doi.org/10.1038/nm0598-627 (1998).Article 
CAS 
PubMed 

Google Scholar 
Chen, C. et al. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 500, 1–10. https://doi.org/10.1016/j.canlet.2020.12.024 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558. https://doi.org/10.1038/s41591-018-0136-1 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zheng, Y. et al. A novel defined endoplasmic reticulum stress-related lncRNA signature for prognosis prediction and immune therapy in glioma. Front. Oncol. 12, 930923. https://doi.org/10.3389/fonc.2022.930923 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 38, 255. https://doi.org/10.1186/s13046-019-1259-z (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Carlino, M. S., Larkin, J. & Long, G. V. Immune checkpoint inhibitors in melanoma. Lancet 398, 1002–1014. https://doi.org/10.1016/s0140-6736(21)01206-x (2021).Article 
CAS 
PubMed 

Google Scholar 
Wang, S. D. et al. The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma. Int. Immunopharmacol. 38, 81–89. https://doi.org/10.1016/j.intimp.2016.05.016 (2016).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Sun, C. & Li, S. PTHR1 in osteosarcoma: Specific molecular mechanisms and comprehensive functional perspective. J. Cell. Mol. Med. 25, 3175–3181. https://doi.org/10.1111/jcmm.16420 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo, X., Gao, C., Yang, D. H. & Li, S. Exosomal circular RNAs: A chief culprit in cancer chemotherapy resistance. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 67, 100937. https://doi.org/10.1016/j.drup.2023.100937 (2023).Article 
CAS 

Google Scholar 
Tomita, R., Sasabe, E., Tomomura, A. & Yamamoto, T. Macrophage-derived exosomes attenuate the susceptibility of oral squamous cell carcinoma cells to chemotherapeutic drugs through the AKT/GSK-3β pathway. Oncol. Rep. 44, 1905–1916. https://doi.org/10.3892/or.2020.7748 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanome, T. et al. Characterization of jumping translocation breakpoint (JTB) gene product isolated as a TGF-beta1-inducible clone involved in regulation of mitochondrial function, cell growth and cell death. Oncogene 26, 5991–6001. https://doi.org/10.1038/sj.onc.1210423 (2007).Article 
CAS 
PubMed 

Google Scholar 
Hatakeyama, S., Osawa, M., Omine, M. & Ishikawa, F. JTB: a novel membrane protein gene at 1q21 rearranged in a jumping translocation. Oncogene 18, 2085–2090. https://doi.org/10.1038/sj.onc.1202510 (1999).Article 
CAS 
PubMed 

Google Scholar 
Jayathirtha, M. et al. Investigating the function of human jumping translocation breakpoint protein (hJTB) and its interacting partners through in-solution proteomics of MCF7 cells. Molecules 27, 301. https://doi.org/10.3390/molecules27238301 (2022).Article 
CAS 

Google Scholar 
Jayathirtha, M., Neagu, A. N., Whitham, D., Alwine, S. & Darie, C. C. Investigation of the effects of downregulation of jumping translocation breakpoint (JTB) protein expression in MCF7 cells for potential use as a biomarker in breast cancer. Am. J. Cancer Res. 12, 4373–4398 (2022).CAS 
PubMed 
PubMed Central 

Google Scholar 
Sanford, D. et al. Jumping translocations in myeloid malignancies associated with treatment resistance and poor survival. Clin. Lymphoma Myeloma Leukemia 15, 556–562. https://doi.org/10.1016/j.clml.2015.05.005 (2015).Article 

Google Scholar 

Hot Topics

Related Articles