Molecular-docking electrolytes enable high-voltage lithium battery chemistries

Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, H. et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6, 588–616 (2022).Article 
CAS 

Google Scholar 
Fan, X. & Wang, C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021).Article 
CAS 
PubMed 

Google Scholar 
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).Article 
CAS 
PubMed 

Google Scholar 
Placke, T., Kloepsch, R., Dühnen, S. & Winter, M. Lithium ion, lithium metal and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electr. 21, 1939–1964 (2017).Article 
CAS 

Google Scholar 
Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).Article 
CAS 
PubMed 

Google Scholar 
Li, M., Wang, C., Chen, Z., Xu, K. & Lu, J. New concepts in electrolytes. Chem. Rev. 120, 6783–6819 (2020).Article 
CAS 
PubMed 

Google Scholar 
Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).Article 
CAS 

Google Scholar 
Cheng, H. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7, 490–513 (2022).Article 
CAS 

Google Scholar 
Chen, X. & Zhang, Q. Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53, 1992–2002 (2020).Article 
CAS 
PubMed 

Google Scholar 
Xu, K. & Cresce, A. V. W. Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. J. Mater. Res. 27, 2327–2341 (2012).Article 
CAS 

Google Scholar 
Zhang, S. S. Design aspects of electrolytes for fast charge of Li‐ion batteries. InfoMat 3, 125–130 (2020).Article 

Google Scholar 
Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).Article 
CAS 

Google Scholar 
Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).Article 
CAS 
PubMed 

Google Scholar 
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).Article 
CAS 
PubMed 

Google Scholar 
Peng, Z. et al. High‐power lithium metal batteries enabled by high‐concentration acetonitrile‐based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30, 2001285 (2020).Article 
CAS 

Google Scholar 
Dokko, K. et al. Solvate ionic liquid electrolyte for Li–S batteries. J. Electrochem. Soc. 160, A1304 (2013).Article 
CAS 

Google Scholar 
Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).Article 

Google Scholar 
Cao, X., Jia, H., Xu, W. & Zhang, J.-G. Localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168, 010522 (2021).Article 
CAS 

Google Scholar 
Zhao, Y. et al. Electrolyte engineering for highly inorganic solid electrolyte interphase in high-performance lithium metal batteries. Chem 9, 682–697 (2023).Article 
CAS 

Google Scholar 
Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).Article 
CAS 

Google Scholar 
Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).Article 
CAS 

Google Scholar 
Jiang, Z. et al. Fluorobenzene, a low-density, economical and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv. Funct. Mater. 31, 2005991 (2020).Article 

Google Scholar 
Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).Article 
CAS 

Google Scholar 
Piao, N. et al. Countersolvent electrolytes for lithium‐metal batteries. Adv. Energy Mater. 10, 1903568 (2020).Article 
CAS 

Google Scholar 
Wang, Z. et al. Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Mater. 30, 228–237 (2020).Article 

Google Scholar 
Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).Article 
CAS 

Google Scholar 
Zhao, Y. et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, Y., Zhou, T., Mensi, M., Choi, J. W. & Coskun, A. Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 14, 299 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y. et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries. Chem. Soc. Rev. 52, 2713–2763 (2023).Article 
CAS 
PubMed 

Google Scholar 
Li, Z. et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat. Commun. 14, 868 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, Y. et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143, 18703–18713 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chen, X., Zhang, X.-Q., Li, H.-R. & Zhang, Q. Cation-solvent, cation-anion and solvent–solvent interactions with electrolyte solvation in lithium batteries. Batteries Supercaps 2, 128–131 (2019).Article 
CAS 

Google Scholar 
Yao, Y. X. et al. Regulating interfacial chemistry in lithium‐ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2020).Article 

Google Scholar 
Lee, H. S., Yang, X. Q., McBreen, J., Okamoto, Y. & Choi, L. S. A new family of anion receptors and their effect on ion pair dissociation and conductivity of lithium salts in non-aqueous solutions. Electrochim. Acta 40, 2353–2356 (1995).Article 
CAS 

Google Scholar 
Lee, H. S., Yang, X. Q., Xiang, C. L., McBreen, J. & Choi, L. S. The synthesis of a new family of boron‐based anion receptors and the study of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solutions. J. Electrochem. Soc. 145, 2813 (1998).Article 
CAS 

Google Scholar 
Li, L. F. et al. New electrolytes for lithium ion batteries using LiF salt and boron based anion receptors. J. Power Sources 184, 517–521 (2008).Article 
CAS 

Google Scholar 
Li, L. F., Lee, H. S., Li, H., Yang, X. Q. & Huang, X. J. A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries. Electrochem. Commun. 11, 2296–2299 (2009).Article 
CAS 

Google Scholar 
Sun, X., Lee, H. S., Yang, X. Q. & McBreen, J. Comparative studies of the electrochemical and thermal stability of two types of composite lithium battery electrolytes using boron‐based anion receptors. J. Electrochem. Soc. 146, 3655 (1999).Article 
CAS 

Google Scholar 
Chen, Z. & Amine, K. Bifunctional electrolyte additive for lithium-ion batteries. Electrochem. Commun. 9, 703–707 (2007).Article 

Google Scholar 
Xie, B. et al. New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Commun. 10, 1195–1197 (2008).Article 
CAS 

Google Scholar 
Wu, H. et al. Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life. J. Electrochem. Soc. 156, A1047–A1050 (2009).Article 
CAS 

Google Scholar 
Qin, Y., Chen, Z., Lee, H. S., Yang, X. Q. & Amine, K. Effect of anion receptor additives on electrochemical performance of lithium-ion batteries. J. Phys. Chem. C 114, 15202–15206 (2010).Article 
CAS 

Google Scholar 
Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).Article 
CAS 

Google Scholar 
Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).Article 
CAS 

Google Scholar 
Zhang, Q.-K. et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).Article 
CAS 

Google Scholar 
Lee, H. S. et al. Synthesis of cyclic aza‐ether compounds and studies of their use as anion receptors in nonaqueous lithium halide salts solution. J. Electrochem. Soc. 147, 9 (2000).Article 
CAS 

Google Scholar 
Qiao, B. et al. Supramolecular regulation of anions enhances conductivity and transference number of lithium in liquid electrolytes. J. Am. Chem. Soc. 140, 10932–10936 (2018).Article 
CAS 
PubMed 

Google Scholar 
Huang, K. et al. Regulation of SEI formation by anion receptors to achieve ultra-stable lithium-metal batteries. Angew. Chem. Int. Ed. 60, 19232–19240 (2021).Article 
CAS 

Google Scholar 
Xu, K., von Cresce, A. & Lee, U. Differentiating contributions to ‘ion transfer’ barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26, 11538–11543 (2010).Article 
CAS 
PubMed 

Google Scholar 
Holoubek, J. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021).Article 
CAS 

Google Scholar 
Yang, Y. et al. Synergy of weakly‐solvated electrolyte and optimized interphase enables graphite anode charge at low temperature. Angew. Chem. Int. Ed. 61, e202208345 (2022).Article 
CAS 

Google Scholar 
Shafiei Sabet, P. & Sauer, D. U. Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel–manganese–cobalt cathodes. J. Power Sources 425, 121–129 (2019).Article 
CAS 

Google Scholar 
Lu, Y., Zhao, C.-Z., Huang, J.-Q. & Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6, 1172–1198 (2022).Article 
CAS 

Google Scholar 
Aurbach, D., Gofer, Y. & Langzam, J. The correlation between surface chemistry, surface morphology and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198 (1989).Article 
CAS 

Google Scholar 
Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2017).Article 

Google Scholar 
Efaw, C. M. et al. Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhu, C. et al. Anion–diluent pairing for stable high-energy Li metal batteries. ACS Energy Lett. 7, 1338–1347 (2022).Article 
CAS 

Google Scholar 
Zhang, J. et al. Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat. Commun. 14, 2211 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, H. et al. Simultaneous stabilization of lithium anode and cathode using hyperconjugative electrolytes for high-voltage lithium metal batteries. Angew. Chem. Int. Edit. 62, e202218970 (2023).Article 
CAS 

Google Scholar 
Huang, Y. et al. Eco-friendly electrolytes via robust bond design for high-energy Li-metal batteries. Energy Environ. Sci. 15, 4349–4361 (2022).Article 
CAS 

Google Scholar 
Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).Article 
CAS 

Google Scholar 
Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, W. et al. Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, X. et al. Understanding steric hindrance effect of solvent molecule in localized high-concentration electrolyte for lithium metal batteries. Carbon Neutrality 2, 34 (2023).Article 

Google Scholar 
Frisch, M. J. et al. Gaussian 09, Revision A.02 (Gaussian Inc., 2009).Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).Article 
PubMed 

Google Scholar 
Manzetti, S. & Lu, T. The geometry and electronic structure of Aristolochic acid: possible implications for a frozen resonance. J. Phys. Org. Chem. 26, 473–483 (2013).Article 
CAS 

Google Scholar 
Lu, T. & Manzetti, S. Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms. J. Struct. Chem. 25, 1521–1533 (2014).Article 
CAS 

Google Scholar 
Lu, T. Molclus, v.1.9.9.9 http://www.keinsci.com/research/molclus.html (accessed on 5 July 2022).Sun, C. et al. 50C fast-charge Li-ion batteries using graphite anode. Adv. Mater. 34, 2206020 (2022).Article 
CAS 

Google Scholar 
Xing, L., Borodin, O., Smith, G. D. & Li, W. Density functional theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate. J. Phys. Chem. A 115, 13896–13905 (2011).Article 
CAS 
PubMed 

Google Scholar 
Borodin, O., Behl, W. & Jow, T. R. Oxidative stability and initial decomposition reactions of carbonate, sulfone and alkyl phosphate-based electrolytes. J. Phys. Chem. C 117, 8661–8682 (2013).Article 
CAS 

Google Scholar 
Shimizu, K., Almantariotis, D. & Gomes, M. Molecular force field for ionic liquids V: hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fluoroalkylimidazolium cations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 114, 3592–3600 (2010).Article 
CAS 
PubMed 

Google Scholar 
Doherty, B., Zhong, X., Gathiaka, S., Li, B. & Acevedo, O. Revisiting OPLS force field parameters for ionic liquid simulations. J. Chem. Theory Comput. 13, 6131–6145 (2017).Article 
CAS 
PubMed 

Google Scholar 
Gerlitz, A. I. et al. Polypropylene carbonate-based electrolytes as model for a different approach towards improved ion transport properties for novel electrolytes. Phys. Chem. Chem. Phys. 25, 4810–4823 (2023).Article 
CAS 
PubMed 

Google Scholar 
Humphrey, W., Dalke, A. & Schulten, K. K. VMD: Visual Molecular Dynamics. J. Mol. Graph Model 14, 33–38 (1995).Article 

Google Scholar 
Brehm, M. & Kirchner, B. TRAVIS—a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories. J. Chem. Inf. Model. 51, 2007–2023 (2011).Article 
CAS 
PubMed 

Google Scholar 
Brehm, M., Thomas, M., Gehrke, S. & Kirchner, B. TRAVIS—a free analyzer for trajectories from molecular simulation. J. Chem. Phys. 152, 164105 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).Article 
CAS 

Google Scholar 
Kresse, G. & Hafner, J. Ab initio molecular dynamics of liquid metals. Phys. Rev. B 47, 558–561 (1993).Article 
CAS 

Google Scholar 
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).Article 
CAS 

Google Scholar 
Leung, K. & Tenney, C. M. Toward first principles prediction of voltage dependences of electrolyte/electrolyte interfacial processes in lithium ion batteries. J. Phys. Chem. C 117, 24224–24235 (2013).Article 
CAS 

Google Scholar 
Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles