Photocatalytic carbyne reactivity of phosphorus ylides for three-component formal cycloaddition reactions

Minh, D. M., Gunning, H. E. & Strausz, O. P. Formation and reactions of monovalent carbon Intermediates. I. Photolysis of diethyl mercuribisdiazoacetate. J. Am. Chem. Soc. 89, 6785–6787 (1967).Article 

Google Scholar 
Strausz, O. P., Thap, D. M. & Font, J. Formation and reactions of monovalent carbon intermediates. II. Further studies on the decomposition of diethyl mercurybisdiazoacetate. J. Am. Chem. Soc. 90, 1930–1931 (1968).Article 
CAS 

Google Scholar 
Strausz, O. P. et al. The formation and reactions of monovalent carbon intermediates. III. The reaction of carbethoxymethyne with olefins. J. Am. Chem. Soc. 96, 5723–5732 (1974).Article 
CAS 

Google Scholar 
Ruzsicska, B. P., Jodhan, A., Choi, H. K. J., Strausz, O. P. & Bell, T. N. Chemistry of carbynes: reaction of CF, CCl, and CBr with alkenes. J. Am. Chem. Soc. 105, 2489–2490 (1983).Article 
CAS 

Google Scholar 
Bogoslavsky, B. et al. Do carbyne radicals really exist in aqueous solution? Angew. Chem. Int. Ed. 51, 90–94 (2012).Article 
CAS 

Google Scholar 
Danovich, D., Bino, A. & Shaik, S. Formation of carbon–carbon triply bonded molecules from two free carbyne radicals via a conical intersection. J. Phys. Chem. Lett. 4, 58–64 (2013).Article 
CAS 
PubMed 

Google Scholar 
Li, W. L. et al. Formation and characterization of a BeOBeC multiple radical featuring a quartet carbyne moiety. Angew. Chem. Int. Ed. 59, 6923–6928 (2020).Article 
CAS 

Google Scholar 
Wang, Z., Jiang, L., Sarró, P. & Suero, M. G. Catalytic cleavage of C(sp2)–C(sp2) bonds with Rh-carbynoids. J. Am. Chem. Soc. 141, 15509–15514 (2019).Article 
CAS 
PubMed 

Google Scholar 
Jiang, L., Sarró, P., Teo, W. J., Llop, J. & Suero, M. G. Catalytic alkene skeletal modification for the construction of fluorinated tertiary stereocenters. Chem. Sci. 13, 4327–4333 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tu, H.-F., Jeandin, A. & Suero, M. G. Catalytic synthesis of cyclopropenium cations with Rh-carbynoids. J. Am. Chem. Soc. 144, 16737–16743 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z., Herraiz, A. G., del Hoyo, A. M. & Suero, M. G. Generating carbyne equivalents with photoredox catalysis. Nature 554, 86–91 (2018).Article 
CAS 
PubMed 

Google Scholar 
Jiang, L., Wang, Z., Armstrong, M. & Suero, M. G. β-Diazocarbonyl compounds: synthesis and their Rh(II)-catalyzed 1,3 C–H insertions. Angew. Chem. Int. Ed. 60, 6177–6184 (2021).Article 
CAS 

Google Scholar 
Li, X., Golz, C. & Alcarazo, M. α-Diazo sulfonium triflates: synthesis, structure, and application to the synthesis of 1-(dialkylamino)-1,2,3-triazoles. Angew. Chem. Int. Ed. 60, 6943–6948 (2021).Article 
CAS 

Google Scholar 
Dong, J. Y. et al. Visible light-induced [3 + 2] cyclization reactions of hydrazones with hypervalent iodine diazo reagents for the synthesis of 1-amino-1,2,3-triazoles. Adv. Synth. Catal. 363, 2133–2139 (2021).Article 
CAS 

Google Scholar 
Su, Y. L., Dong, K., Zheng, H. & Doyle, M. P. Generation of diazomethyl radicals by hydrogen atom abstraction and their cycloaddition with alkenes. Angew. Chem. Int. Ed. 60, 18484–18488 (2021).Article 
CAS 

Google Scholar 
Wang, X. et al. Convergent synthesis of 1,4-dicarbonyl Z-alkenes through three-component coupling of alkynes, α-diazo sulfonium triflate, and water. J. Am. Chem. Soc. 144, 4952–4965 (2022).Article 
CAS 
PubMed 

Google Scholar 
Das, M., Vu, M. D., Zhang, Q. & Liu, X.-W. Metal-free visible light photoredox enables generation of carbyne equivalents via phosphonium ylide C–H activation. Chem. Sci. 10, 1687–1691 (2019).Article 
CAS 
PubMed 

Google Scholar 
Vu, M. D., Leng, W.-L., Hsu, H.-C. & Liu, X.-W. Alkene synthesis using phosphonium ylides as umpolung reagents. Asian J. Org. Chem. 8, 93–96 (2019).Article 

Google Scholar 
Matsumoto, A., Maeda, N. & Maruoka, K. Bidirectional elongation strategy using ambiphilic radical linchpin for modular access to 1,4-dicarbonyls via sequential photocatalysis. J. Am. Chem. Soc. 145, 20344–20354 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wiles, R. J. & Molander, G. A. Photoredox-mediated net-neutral radical/polar crossover reactions. Isr. J. Chem. 60, 281–293 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sharma, S., Singh, J. & Sharma, A. Visible light assisted radical–polar/polar–radical crossover reactions in organic synthesis. Adv. Synth. Catal. 363, 3146–3169 (2021).Article 
CAS 

Google Scholar 
Rammohan, A., Krinochkin, A. P., Khasanov, A. F., Kopchuk, D. S. & Zyryanov, G. V. Sustainable solvent-free Diels–Alder approaches in the development of constructive heterocycles and functionalized materials: a review. Top. Curr. Chem. 380, 43 (2022).Article 
CAS 

Google Scholar 
Horibe, T. & Ishihara, K. Initiators for radical cation-induced [2 + 2]- and [4 + 2]-cycloadditions of electron-rich alkenes. Chem. Lett. 49, 107–113 (2020).Article 
CAS 

Google Scholar 
Okada, Y. & Chiba, K. Redox-tag processes: Intramolecular electron transfer and its broad relationship to redox reactions in general. Chem. Rev. 118, 4592–4630 (2018).Article 
CAS 
PubMed 

Google Scholar 
Fontana, A. et al. Volvatellin, caulerpenyne-related product from the sacoglossan Volvatella sp. J. Nat. Prod. 62, 931–933 (1999).Article 
CAS 
PubMed 

Google Scholar 
Lenz, C., Boeckler, F., Hübner, H. & Gmeiner, P. Fancy bioisosteres: synthesis, SAR, and pharmacological investigations of novel nonaromatic dopamine D3 receptor ligands. Bioorg. Med. Chem. 13, 4434–4442 (2005).Article 
CAS 
PubMed 

Google Scholar 
Durrant, J. D. & McCammon, J. A. Potential drug-like inhibitors of group 1 influenza neuraminidase identified through computer-aided drug design. Comput. Bio. Chem. 34, 97–105 (2010).Article 
CAS 

Google Scholar 
Zhu, W. et al. A remarkable difference that one fluorine atom confers on the mechanisms of inactivation of human ornithine aminotransferase by two cyclohexene analogues of γ-aminobutyric acid. J. Am. Chem. Soc. 142, 4892–4903 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, F., Xu, X., Yan, Y., Zhang, J. & Yang, Y. Asymmetric total synthesis of montanine-type amaryllidaceae alkaloids. Org. Chem. Front. 11, 668–672 (2024).Article 
CAS 

Google Scholar 
Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
MacKenzie, I. A. et al. Discovery and characterization of an acridine radical photoreductant. Nature 580, 76–80 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shang, T.-Y. et al. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chem. Commun. 55, 5408–5419 (2019).Article 
CAS 

Google Scholar 
Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).Article 
CAS 

Google Scholar 
Neese, F. Software update: the ORCA program system—version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1606 (2022).Article 

Google Scholar 

Hot Topics

Related Articles