Systematic analysis of microorganisms’ metabolism for selective targeting

Hill, C. Microbiome and infection: A case for “selective depletion”. Ann. Nutr. Metab. 77(3), 4–9 (2021).Article 
CAS 

Google Scholar 
Luo, Y. & Zhou, T. Connecting the dots: Targeting the microbiome in drug toxicity. Med. Res. Rev. 42(1), 83–111 (2022).Article 
CAS 
PubMed 

Google Scholar 
Woodhouse, C., Patel, V., Singanayagam, A. & Shawcross, D. the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease. Aliment. Pharmacol. Ther. 47(2), 192–202 (2018).Article 
CAS 
PubMed 

Google Scholar 
Sarin, S. K., Pande, A. & Schnabl, B. Microbiome as a therapeutic target in alcohol-related liver disease. J. Hepatol. 70(2), 260–272 (2019).Article 
PubMed 

Google Scholar 
Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The brain-gut-microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6(2), 133–148 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Dinan, T. G. & Cryan, J. F. The microbiome-gut-brain axis in health and disease. Gastroenterol. Clin. 46(1), 77–89 (2017).Article 

Google Scholar 
Ghaisas, S., Maher, J. & Kanthasamy, A. Gut microbiome in health and disease: Linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol. Ther. 158, 52–62 (2016).Article 
CAS 
PubMed 

Google Scholar 
Chen, Y.-Y. et al. Microbiome–metabolome reveals the contribution of gut–kidney axis on kidney disease. J. Transl. Med. 17(1), 1–11 (2019).Article 

Google Scholar 
Shankaranarayanan, D. & Raj, D. Gut microbiome and kidney disease. Clin. J. Am. Soc. Nephrol. (2022).Ahmadmehrabi, S. & Tang, W. W. Gut microbiome and its role in cardiovascular diseases. Curr. Opin. Cardiol. 32(6), 761 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Okuyama, Y. et al. The influence of gut microbiome on progression of overactive bladder symptoms: A community-based 3-year longitudinal study in Aomori, Japan. Int. Urol. Nephrol. 54(1), 9–16 (2022).Article 
CAS 
PubMed 

Google Scholar 
Okamoto, T. et al. Altered gut microbiome associated with overactive bladder and daily urinary urgency. World J. Urol. 39(3), 847–853 (2021).Article 
CAS 
PubMed 

Google Scholar 
Patangia, D. V., Anthony Ryan, C., Dempsey, E., Paul Ross, R. & Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen. 11(1), e1260 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Panda, S. et al. Short-term effect of antibiotics on human gut microbiota. PloS One 9(4), e95476 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Villarreal, A. A., Aberger, F. J., Benrud, R. & Gundrum, J. D. Use of broad-spectrum antibiotics and the development of irritable bowel syndrome. WMJ 111(1), 17–20 (2012).PubMed 

Google Scholar 
Shimodaira, Y., Watanabe, K. & Iijima, K. The risk of antibiotics and enterocolitis for the development of inflammatory bowel disease: A Japanese administrative database analysis. Sci. Rep. 12(1), 1–8 (2022).Article 

Google Scholar 
Ungaro, R. et al. Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative colitis: A meta-analysis. ACG 109(11), 1728–1738 (2014).CAS 

Google Scholar 
Vallianou, N., Dalamaga, M., Stratigou, T., Karampela, I. & Tsigalou, C. Do antibiotics cause obesity through long-term alterations in the gut microbiome? A review of current evidence. Curr. Obesity Rep. 10(3), 244–262 (2021).Article 

Google Scholar 
Ferrajolo, C. et al. Antibiotic-induced liver injury in paediatric outpatients: A case-control study in primary care databases. Drug Saf. 40(4), 305–315 (2017).Article 
CAS 
PubMed 

Google Scholar 
Stine, J. G. & Lewis, J. H. Hepatotoxicity of antibiotics: A review and update for the clinician. Clin. Liver Dis. 17(4), 609–642 (2013).Article 
PubMed 

Google Scholar 
Ianiro, G., Tilg, H. & Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut. 65(11), 1906–1915 (2016).Article 
CAS 
PubMed 

Google Scholar 
Melander, R. J., Zurawski, D. V. & Melander, C. Narrow-spectrum antibacterial agents. Medchemcomm. 9(1), 12–21 (2018).Article 
CAS 
PubMed 

Google Scholar 
Ostorhazi, E. et al. Advantage of a narrow spectrum host defense (antimicrobial) peptide over a broad spectrum analog in preclinical drug development. Front. Chem. 6, 359 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Alm, R. A. & Lahiri, S. D. Narrow-spectrum antibacterial agents—Benefits and challenges. Antibiotics 9(7), 418 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mondhe, M., Chessher, A., Goh, S., Good, L. & Stach, J. E. Species-selective killing of bacteria by antimicrobial peptide-PNAs. PloS One 9(2), e89082 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Chandra, N. Computational approaches for drug target identification in pathogenic diseases. Exp. Opin. Drug Discov. 6(10), 975–979 (2011).Article 
CAS 

Google Scholar 
Garcia-Albornoz, M. A. & Nielsen, J. Application of genome-scale metabolic models in metabolic engineering. Ind. Biotechnol. 9(4), 203–214 (2013).Article 
CAS 

Google Scholar 
Kim, W. J., Kim, H. U. & Lee, S. Y. Current state and applications of microbial genome-scale metabolic models. Curr. Opin. Syst. Biol. 2, 10–18 (2017).Article 

Google Scholar 
Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20(1), 1–18 (2019).Article 

Google Scholar 
Purdy, H. M. & Reed, J. L. Evaluating the capabilities of microbial chemical production using genome-scale metabolic models. Curr. Opin. Syst. Biol. 2, 91–97 (2017).Article 

Google Scholar 
Choi, K. R. et al. Systems metabolic engineering strategies: Integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37(8), 817–837 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kim, T. Y., Kim, H. U. & Lee, S. Y. Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metab. Eng. 12(2), 105–111 (2010).Article 
CAS 
PubMed 

Google Scholar 
Jerby, L. & Ruppin, E. Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin. Cancer Res. 18(20), 5572–5584 (2012).Article 
CAS 
PubMed 

Google Scholar 
Cesur MF, Siraj B, Uddin R, Durmuş S, Çakır T. Network-based metabolism-centered screening of potential drug targets in Klebsiella pneumoniae at genome scale. Front. Cell. Infect. Microbiol. 447 (2020).Mohite, O. S., Weber, T., Kim, H. U. & Lee, S. Y. Genome-scale metabolic reconstruction of actinomycetes for antibiotics production. Biotechnol. J. 14(1), 1800377 (2019).Article 

Google Scholar 
Price, N. D., Reed, J. L. & Palsson, B. Ø. Genome-scale models of microbial cells: Evaluating the consequences of constraints. Nat. Rev. Microbiol. 2(11), 886–897 (2004).Article 
CAS 
PubMed 

Google Scholar 
Lewis, N. E., Nagarajan, H. & Palsson, B. O. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10(4), 291–305 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell. 161(5), 971–987 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis?. Nat. Biotechnol. 28(3), 245–248 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, H. U., Kim, T. Y. & Lee, S. Y. Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Mol. BioSyst. 6(2), 339–348 (2010).Article 
CAS 
PubMed 

Google Scholar 
Perumal, D., Samal, A., Sakharkar, K. R. & Sakharkar, M. K. Targeting multiple targets in Pseudomonas aeruginosa PAO1 using flux balance analysis of a reconstructed genome-scale metabolic network. J. Drug Target. 19(1), 1–13 (2011).Article 
CAS 
PubMed 

Google Scholar 
Yeh, I., Hanekamp, T., Tsoka, S., Karp, P. D. & Altman, R. B. Computational analysis of Plasmodium falciparum metabolism: Organizing genomic information to facilitate drug discovery. Genome Res. 14(5), 917–924 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Korcsmáros, T., Szalay, M. S., Böde, C., Kovács, I. A. & Csermely, P. How to design multi-target drugs: Target search options in cellular networks. Exp. Opin. Drug Discov. 2(6), 799–808 (2007).Article 

Google Scholar 
Zimmermann, G. R., Lehar, J. & Keith, C. T. Multi-target therapeutics: When the whole is greater than the sum of the parts. Drug Discov. Today 12(1–2), 34–42 (2007).Article 
CAS 
PubMed 

Google Scholar 
Talevi, A. Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 205 (2015).Schellenberger, J., Park, J. O., Conrad, T. M. & Palsson, B. Ø. BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinf. 11, 1–10 (2010).Article 

Google Scholar 
EPA U. Escherichia coli K‐12 final risk assessment: Attachment I—Final risk assessment of Escherichia coli K‐12 derivatives (1997).Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucl. Acids Res. 47(W1), W256–W259 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liao, Y.-C. et al. An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, i YL1228. J. Bacteriol. 193(7), 1710–1717 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lewis, L. A., Perisin, M. A., & Tobias, A. V. Metabolic modeling of Pseudomonas putida to understand and improve the breakdown of plastic waste. CCDC Army Research Laboratory Adelphi United States (2020).Monk, J. M. et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35(10), 904–908 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thiele, I. et al. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst. Biol. 5(1), 1–9 (2011).Article 

Google Scholar 
Monk, J. M. et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc. Natl. Acad. Sci. 110(50), 20338–20343 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Charusanti, P. et al. An experimentally-supported genome-scale metabolic network reconstruction for Yersinia pestis CO92. BMC Syst. Biol. 5(1), 1–13 (2011).Article 

Google Scholar 
Sigurdsson, G., Fleming, R. M., Heinken, A. & Thiele, I. A systems biology approach to drug targets in Pseudomonas aeruginosa biofilm. PLoS One. 7(4), e34337 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cottarel, G. & Wierzbowski, J. Combination drugs, an emerging option for antibacterial therapy. Trends Biotechnol. 25(12), 547–555 (2007).Article 
CAS 
PubMed 

Google Scholar 
Kaelin, W. G. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer. 5(9), 689–698 (2005).Article 
CAS 
PubMed 

Google Scholar 
Klobucar, K. & Brown, E. D. Use of genetic and chemical synthetic lethality as probes of complexity in bacterial cell systems. FEMS Microbiol. Rev. 42(1), fux054 (2018).Article 

Google Scholar 
Tyers, M. & Wright, G. D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 17(3), 141–155 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Y. Using synthetic-lethal interactions to discover antibacterial drug targets (2022).Dehghan Manshadi, M., Setoodeh, P. & Zare, H. Rapid-SL identifies synthetic lethal sets with an arbitrary cardinality. Sci. Rep. 12(1), 1–9 (2022).Article 

Google Scholar 
Kohanski, M. A., Dwyer, D. J. & Collins, J. J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 8(6), 423–435 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Murima, P., McKinney, J. D. & Pethe, K. Targeting bacterial central metabolism for drug development. Chem. Biol. 21(11), 1423–1432 (2014).Article 
CAS 
PubMed 

Google Scholar 
Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Greedy algorithms. Introduction Algorithms 1, 329–355 (2001).
Google Scholar 
Wishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1), D1074–D1082 (2018).Article 
CAS 
PubMed 

Google Scholar 
Falagas, M. E., Athanasaki, F., Voulgaris, G. L., Triarides, N. A. & Vardakas, K. Z. Resistance to fosfomycin: Mechanisms, frequency and clinical consequences. Int. J. Antimicrob. Agents. 53(1), 22–28 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Y., Wang, L., Zhou, C., Lin, Y., Liu, S., & Zeng, W., et al. Unraveling mechanisms and epidemic characteristics of nitrofurantoin resistance in uropathogenic Enterococcus faecium clinical isolates. Infect. Drug Resist. 1601–11 (2021).Christaki, E., Marcou, M. & Tofarides, A. Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. J. Mol. Evol. 88, 26–40 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles