1,3-Difunctionalization of [1.1.1]propellane through iron-hydride catalyzed hydropyridylation

Shire, B. R. & Anderson, E. A. Conquering the synthesis and functionalization of bicyclo[1.1.1]pentanes. JACS Au 3, 1539–1553 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Bellotti, P. & Glorius, F. Strain-release photocatalysis. J. Am. Chem. Soc. 145, 20716–20732 (2023).Article 
PubMed 

Google Scholar 
Pramanik, M. M. D., Qian, H., Xiao, W.-J. & Chen, J.-R. Photoinduced strategies towards strained molecules. Org. Chem. Front. 7, 2531–2537 (2020).Article 

Google Scholar 
He, F.-S., Xie, S., Yao, Y. & Wu, J. Recent advances in the applications of [1.1.1]propellane in organic synthesis. Chin. Chem. Lett. 31, 3065–3072 (2020).Article 

Google Scholar 
Kanazawa, J. & Uchiyama, M. Recent advances in the synthetic chemistry of bicyclo[1.1.1]pentane. Synlett 30, 1–11 (2019).Article 

Google Scholar 
Huang, W., Keess, S. & Molander, G. A. A general and practical route to functionalized bicyclo[1.1.1]pentane-heteroaryls enabled by photocatalytic multicomponent heteroarylation of [1.1.1]propellane. Angew. Chem. Int. Ed. 62, e202302223 (2023).Article 

Google Scholar 
Gao, Y. et al. Visible light-induced synthesis of 1,3-disubstituted bicyclo[1.1.1]pentane ketones via cooperative photoredox and N-heterocyclic carbene catalysis. Green. Chem. 25, 3909–3915 (2023).Article 

Google Scholar 
Dong, W., Keess, S. & Molander, G. A. Nickel-mediated alkyl-, acyl-, and sulfonylcyanation of [1.1.1]propellane. Chem. Catal. 3, 100608 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Pickford, H. D. et al. Rapid and scalable halosulfonylation of strain-release reagents. Angew. Chem. Int. Ed. 62, e202213508 (2023).Article 

Google Scholar 
Huang, W., Keess, S. & Molander, G. A. One step synthesis of unsymmetrical 1,3-disubstituted BCP ketones via nickel/photoredox-catalyzed [1.1.1]propellane multicomponent dicarbofunctionalization. Chem. Sci. 13, 11936–11942 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Dong, W. et al. Exploiting the sp2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propellane. Nat. Chem. 14, 1068–1077 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Huang, W., Keess, S. & Molander, G. A. Dicarbofunctionalization of [1.1.1]propellane enabled by nickel/photoredox dual catalysis: One-step multicomponent strategy for the synthesis of BCP-aryl derivatives. J. Am. Chem. Soc. 144, 12961–12969 (2022).Article 
PubMed 

Google Scholar 
Livesley, S. et al. Electrophilic activation of [1.1.1]propellane for the synthesis of nitrogen-substituted bicyclo[1.1.1]pentanes. Angew. Chem. Int. Ed. 61, e202111291 (2022).Article 
ADS 

Google Scholar 
Nugent, J., Sterling, A. J., Frank, N., Mousseau, J. J. & Anderson, E. A. Synthesis of α-quaternary bicyclo[1.1.1]pentanes through synergistic organophotoredox and hydrogen atom transfer catalysis. Org. Lett. 23, 8628–8633 (2021).Article 
PubMed 

Google Scholar 
Wei, Y. et al. Radical carbosulfonylation of propellane: synthesis of sulfonyl β-keto-bicyclo[1,1,1]pentanes. Synthesis 53, 3325–3332 (2021).Article 

Google Scholar 
Pickford, H. D. et al. Twofold radical-based synthesis of n,c-difunctionalized bicyclo[1.1.1]pentanes. J. Am. Chem. Soc. 143, 9729–9736 (2021).Article 
PubMed 

Google Scholar 
Wu, Z., Xu, Y., Zhang, H., Wu, X. & Zhu, C. Radical-mediated sulfonyl alkynylation, allylation, and cyanation of propellane. Chem. Commun. 57, 6066–6069 (2021).Article 

Google Scholar 
Shin, S., Lee, S., Choi, W., Kim, N. & Hong, S. Visible-light-induced 1,3-aminopyridylation of [1.1.1]propellane with n-aminopyridinium salts. Angew. Chem. Int. Ed. 60, 7873–7879 (2021).Article 

Google Scholar 
Wu, Z., Xu, Y., Wu, X. & Zhu, C. Synthesis of selenoether and thioether functionalized bicyclo[1.1.1]pentanes. Tetrahedron 76, 131692 (2020).Article 

Google Scholar 
Zhang, X. et al. Copper-mediated synthesis of drug-like bicyclopentanes. Nature 580, 220–226 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Yu, S., Jing, C., Noble, A. & Aggarwal, V. K. 1,3-Difunctionalizations of [1.1.1]propellane via 1,2-metallate rearrangements of boronate complexes. Angew. Chem. Int. Ed. 59, 3917–3921 (2020).Article 

Google Scholar 
Gianatassio, R. et al. Organic chemistry. strain-release amination. Science 351, 241–246 (2016).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Shin, S., Kim, Y. & Hong, S. Three-component cyclobutylation via silver(I)-catalyzed carbene transfer reactions with [1.1.1]propellane. ACS Catal. 13, 13325–13332 (2023).Article 

Google Scholar 
Yu, S., Noble, A., Bedford, R. B. & Aggarwal, V. K. Methylenespiro[2.3]hexanes via nickel-catalyzed cyclopropanations with [1.1.1]propellane. J. Am. Chem. Soc. 141, 20325–20334 (2019).Article 
PubMed 

Google Scholar 
Lasányi, D. & Tolnai, G. L. Copper-catalyzed ring opening of [1.1.1]propellane with alkynes: Synthesis of exocyclic allenic cyclobutanes. Org. Lett. 21, 10057–10062 (2019).Article 
PubMed 

Google Scholar 
Du, X., Xu, D., Xu, G., Yu, C. & Jiang, X. Synthesis of imidized cyclobutene derivatives by strain release of [1.1.1]propellane. Org. Lett. 24, 7323–7327 (2022).Article 
PubMed 

Google Scholar 
Adcock, J. L. & Gakh, A. A. Nucleophilic substitution in 1-substituted 3-iodobicyclo[1.1.1]pentanes. a new synthetic route to functionalized bicyclo[1.1.1]pentane derivatives. J. Org. Chem. 57, 6206–6210 (1992).Article 

Google Scholar 
Wiberg, K. B. & Walker, F. H. [1.1.1]propellane. J. Am. Chem. Soc. 104, 5239–5240 (1982).Article 

Google Scholar 
Shelp, R., Merchant, R. R., Hughes, J. M. E. & Walsh, P. J. Enantioenriched BCP benzylamine synthesis via metal hydride hydrogen atom transfer/sulfinimine addition to [1.1.1]propellane. Org. Lett. 24, 110–114 (2022).Article 
PubMed 

Google Scholar 
Matos, J. L. M., Vásquez-Céspedes, S., Gu, J., Oguma, T. & Shenvi, R. A. Branch-selective addition of unactivated olefins into imines and aldehydes. J. Am. Chem. Soc. 140, 16976–16981 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Quint, V. et al. Transition metal-free regioselective phosphonation of pyridines: scope and mechanism. ACS Org. Inorg. Au 3, 151–157 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Mathi, G. R., Kweon, B., Moon, Y., Jeong, Y. & Hong, S. Regioselective C-H functionalization of heteroarene n-oxides enabled by a traceless nucleophile. Angew. Chem. Int. Ed. 59, 22675–22683 (2020).Article 

Google Scholar 
Wang, J. et al. E-selective radical difunctionalization of unactivated alkynes: preparation of functionalized allyl alcohols from aliphatic alkynes. Adv. Sci. 11, e2309022 (2024).Article 

Google Scholar 
Lei, Z., Zhang, W. & Wu, J. Photocatalytic hydrogen atom transfer-induced arbuzov-type α-C(sp3)–H phosphonylation of aliphatic amines. ACS Catal. 13, 16105–16113 (2023).Article 

Google Scholar 
Wei, Y., Wu, X., Chen, Y. & Zhu, C. Radical-polar crossover allenylation of alkenes: Divergent synthesis of homoallenic alcohols and amides. Chem. Catal. 3, 100551 (2023).Article 

Google Scholar 
Das, M., Zamani, L., Bratcher, C. & Musacchio, P. Z. Azolation of benzylic C-H bonds via photoredox-catalyzed carbocation generation. J. Am. Chem. Soc. 145, 3861–3868 (2023).Article 

Google Scholar 
Wu, X. et al. 11C, 12C and 13C-cyanation of electron-rich arenes via organic photoredox catalysis. Chem 9, 343–362 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Murray, P. R. D. et al. Radical redox annulations: a general light-driven method for the synthesis of saturated heterocycles. ACS Catal. 12, 13732–13740 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Bi, M.-H., Cheng, Y., Xiao, W.-J. & Chen, J.-R. Visible-light-induced photoredox-catalyzed selective 1,4-difluoroalkylesterification of 1-aryl-1,3-dienes. Org. Lett. 24, 7589–7594 (2022).Article 
PubMed 

Google Scholar 
Leibler, I. N.-M., Tekle-Smith, M. A. & Doyle, A. G. A general strategy for C(sp3)–H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor. Nat. Commun. 12, 1–10 (2021).Article 

Google Scholar 
Chen, W. et al. Direct arene C-H fluorination with 18F- via organic photoredox catalysis. Science 364, 1170–1174 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Li, G.-X. et al. A unified photoredox-catalysis strategy for C(sp3)-H hydroxylation and amidation using hypervalent iodine. Chem. Sci. 8, 7180–7185 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
McManus, J. B. & Nicewicz, D. A. Direct C-H cyanation of arenes via organic photoredox catalysis. J. Am. Chem. Soc. 139, 2880–2883 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Xia, J.-B., Zhu, C. & Chen, C. Visible light-promoted metal-free sp3-C–H fluorination. Chem. Commun. 50, 11701–11704 (2014).Article 

Google Scholar 
Michaudel, Q., Thevenet, D. & Baran, P. S. Intermolecular Ritter-type C-H amination of unactivated sp3 carbons. J. Am. Chem. Soc. 134, 2547–2550 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Green, S. A. et al. The high chemofidelity of metal-catalyzed hydrogen atom transfer. Acc. Chem. Res. 51, 2628–2640 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Shibutani, S., Nagao, K. & Ohmiya, H. A dual cobalt and photoredox catalysis for hydrohalogenation of alkenes. J. Am. Chem. Soc. 146, 4375–4379 (2024).Article 
PubMed 

Google Scholar 
Kong, L., Gan, X.-C., van der Puyl Lovett, V. A. & Shenvi, R. A. Alkene hydrobenzylation by a single catalyst that mediates iterative outer-sphere steps. J. Am. Chem. Soc. 146, 2351–2357 (2024).Article 
PubMed 

Google Scholar 
Banjare, S. K. et al. Access to polyheterocyclic compounds through iron(ii)-mediated radical cascade cyclization utilizing 2-ethynylbenzaldehydes and aryl isonitriles. Org. Lett. 25, 6424–6428 (2023).Article 
PubMed 

Google Scholar 
Takekawa, Y., Nakagawa, M., Nagao, K. & Ohmiya, H. A quadruple catalysis enabling intermolecular branch-selective hydroacylation of styrenes. Chemistry 29, e202301484 (2023).Article 
PubMed 

Google Scholar 
Nakagawa, M., Matsuki, Y., Nagao, K. & Ohmiya, H. A triple photoredox/cobalt/brønsted acid catalysis enabling markovnikov hydroalkoxylation of unactivated alkenes. J. Am. Chem. Soc. 144, 7953–7959 (2022).Article 
PubMed 

Google Scholar 
Green, S. A., Huffman, T. R., McCourt, R. O., van der Puyl, V. & Shenvi, R. A. Hydroalkylation of olefins to form quaternary carbons. J. Am. Chem. Soc. 141, 7709–7714 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Ma, X., Dang, H., Rose, J. A., Rablen, P. & Herzon, S. B. Hydroheteroarylation of unactivated alkenes using n-methoxyheteroarenium salts. J. Am. Chem. Soc. 139, 5998–6007 (2017).Article 
PubMed 

Google Scholar 
Ma, X. & Herzon, S. B. Intermolecular hydropyridylation of unactivated alkenes. J. Am. Chem. Soc. 138, 8718–8721 (2016).Article 
PubMed 

Google Scholar 
Qin, J. et al. Photoinduced cobalt catalysis for the reductive coupling of pyridines and dienes enabled by paired single-electron transfer. Angew. Chem. Int. Ed. 62, e202310639 (2023).Article 

Google Scholar 
Bergamaschi, E., Mayerhofer, V. J. & Teskey, C. J. Light-driven cobalt hydride catalyzed hydroarylation of styrenes. ACS Catal. 12, 14806–14811 (2022).Article 

Google Scholar 
Wu, X. et al. Intercepting hydrogen evolution with hydrogen-atom transfer: electron-initiated hydrofunctionalization of alkenes. J. Am. Chem. Soc. 144, 17783–17791 (2022).Article 
PubMed 

Google Scholar 
Liang, B., Wang, Q. & Liu, Z.-Q. A Fe(III)/NaBH4-promoted free-radical hydroheteroarylation of alkenes. Org. Lett. 19, 6463–6465 (2017).Article 
PubMed 

Google Scholar 
Lo, J. C. et al. Fe-catalyzed C-C bond construction from olefins via radicals. J. Am. Chem. Soc. 139, 2484–2503 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Greenwood, J. W., Boyle, B. T. & McNally, A. Pyridylphosphonium salts as alternatives to cyanopyridines in radical-radical coupling reactions. Chem. Sci. 12, 10538–10543 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Jung, J., Kim, J., Park, G., You, Y. & Cho, E. J. Selective debromination and α-hydroxylation of α-bromo ketones using Hantzsch esters as photoreductants. Adv. Synth. Catal. 358, 74–80 (2016).Article 

Google Scholar 
Tan, C.-Y., Kim, M., Park, I., Kim, Y. & Hong, S. Site-selective pyridine c-h alkylation with alcohols and thiols via single-electron transfer of frustrated lewis pairs. Angew. Chem. Int. Ed. 61, e202213857 (2022).Article 

Google Scholar 
Kim, C., Jeong, J., Vellakkaran, M. & Hong, S. Photocatalytic decarboxylative pyridylation of carboxylic acids using in situ-generated amidyl radicals as oxidants. ACS Catal. 12, 13225–13233 (2022).Article 

Google Scholar 
Kim, M., Koo, Y. & Hong, S. N-functionalized pyridinium salts: a new chapter for site-selective pyridine C–H functionalization via radical-based processes under visible light irradiation. Acc. Chem. Res. 55, 3043–3056 (2022).Article 
PubMed 

Google Scholar 
Kim, M., You, E., Kim, J. & Hong, S. Site-selective pyridylic C-H functionalization by photocatalytic radical cascades. Angew. Chem. Int. Ed. 61, e202204217 (2022).Article 
ADS 

Google Scholar 
Choi, H., Mathi, G. R., Hong, S. & Hong, S. Enantioselective functionalization at the C4 position of pyridinium salts through NHC catalysis. Nat. Commun. 13, 1776 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Lee, W., Jung, S., Kim, M. & Hong, S. Site-selective direct C-H pyridylation of unactivated alkanes by triplet excited anthraquinone. J. Am. Chem. Soc. 143, 3003–3012 (2021).Article 
PubMed 

Google Scholar 
Cao, H., Bhattacharya, D., Cheng, Q. & Studer, A. C-H functionalization of pyridines via oxazino pyridine intermediates: switching to para-selectivity under acidic conditions. J. Am. Chem. Soc. 145, 15581–15588 (2023).Article 
PubMed 

Google Scholar 
Vellakkaran, M., Kim, T. & Hong, S. Visible-light-induced c4-selective functionalization of pyridinium salts with cyclopropanols. Angew. Chem. Int. Ed. 61, e202113658 (2022).Article 

Google Scholar 
Jung, S., Shin, S., Park, S. & Hong, S. Visible-light-driven c4-selective alkylation of pyridinium derivatives with alkyl bromides. J. Am. Chem. Soc. 142, 11370–11375 (2020).Article 
PubMed 

Google Scholar 
Moon, Y. et al. Visible light induced alkene aminopyridylation using N-aminopyridinium salts as bifunctional reagents. Nat. Commun. 10, 4117 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Kim, D., Rahaman, S. M. W., Mercado, B. Q., Poli, R. & Holland, P. L. Roles of iron complexes in catalytic radical alkene cross-coupling: a computational and mechanistic study. J. Am. Chem. Soc. 141, 7473–7485 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Gan, X.-C. et al. Iron-catalyzed hydrobenzylation: stereoselective synthesis of (-)-eugenial C. J. Am. Chem. Soc. 145, 15714–15720 (2023).Article 
PubMed 

Google Scholar 
Zhang, C., He, Y. & An, G. Iron-mediated divergent reductive coupling reactions of heteroarenes with alkenes. Org. Chem. Front. 10, 2318–2323 (2023).Article 

Google Scholar 
Karnik, A. V. & Hasan, M. Conformations Of Cyclic, Fused And Bridged Ring Molecules. in Stereochemistry (eds. Karnik, A. V. & Hasan, M.) Ch. 8 (Elsevier, 2021).Ni, S.-F. et al. Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coord. Chem. Rev. 455, 214255 (2022).Article 

Google Scholar 
Czerwiński, P. J. & Furman, B. Reductive functionalization of amides in synthesis and for modification of bioactive compounds. Front Chem. 9, 655849 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Huang, Z., Lim, H. N., Mo, F., Young, M. C. & Dong, G. Transition metal-catalyzed ketone-directed or mediated C-H functionalization. Chem. Soc. Rev. 44, 7764–7786 (2015).Article 
PubMed 

Google Scholar 
Liu, H., Laporte, A. G., Tardieu, D., Hazelard, D. & Compain, P. Formal glycosylation of quinones with exo-glycals enabled by iron-mediated oxidative radical-polar crossover. J. Org. Chem. 87, 13178–13194 (2022).Article 
PubMed 

Google Scholar 
Saavedra, B. & Ramón, D. J. Deep eutectic solvent as a sustainable medium for c–c bond formation via multicomponent radical conjugate additions. ACS Sustain. Chem. Eng. 9, 7941–7947 (2021).Article 

Google Scholar 
Tardieu, D. et al. Stereoselective synthesis of C,C-glycosides from exo-glycals enabled by iron-mediated hydrogen atom transfer. Org. Lett. 21, 7262–7267 (2019).Article 
PubMed 

Google Scholar 
Lo, J. C., Yabe, Y. & Baran, P. S. A practical and catalytic reductive olefin coupling. J. Am. Chem. Soc. 136, 1304–1307 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Chinchole, A., Henriquez, M. A., Cortes-Arriagada, D., Cabrera, A. R. & Reiser, O. Iron(III)-light-induced homolysis: a dual photocatalytic approach for the hydroacylation of alkenes using acyl radicals via direct HAT from aldehydes. ACS Catal. 12, 13549–13554 (2022).Article 

Google Scholar 
Yan, J. et al. Divergent functionalization of aldehydes photocatalyzed by neutral eosin Y with sulfone reagents. Nat. Commun. 12, 7214 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Jung, S., Lee, H., Moon, Y., Jung, H.-Y. & Hong, S. Site-selective c–h acylation of pyridinium derivatives by photoredox catalysis. ACS Catal. 9, 9891–9896 (2019).Article 

Google Scholar 
Arnett, E. M. & Wu, C. Y. Base strengths of some aliphatic ethers in aqueous sulfuric acid. J. Am. Chem. Soc. 84, 1680–1684 (1962).Article 

Google Scholar 

Hot Topics

Related Articles