pH drives electron density fluctuations that enhance electric field-induced liquid flow

Ohshima, H. Theory of Colloid and Interfacial Electric Phenomena (Elsevier Academic Press, 2006).Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).Article 
CAS 
PubMed 

Google Scholar 
Eijkel, J. C. T. & Berg, A. V. D. Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluid 1, 249–267 (2005).Article 
CAS 

Google Scholar 
Haywood, D. G., Saha-Shah, A., Baker, L. A. & Jacobson, S. C. Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets. Anal. Chem. 87, 172–187 (2015).Article 
CAS 
PubMed 

Google Scholar 
Karniadakis, G., Beskok, A., Aluru, N. Microflows and Nanoflows Fundamentals and Simulation, 1 edn. (Springer, 2005).Bonthuis, D. J. & Netz, R. R. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid–electrolyte interfaces. J. Phys. Chem. B 117, 11397–11413 (2013).Article 
CAS 
PubMed 

Google Scholar 
Rezaei, M. et al. Interfacial, electroviscous, and nonlinear dielectric effects on electrokinetics at highly charged surfaces. J. Phys. Chem. B 125, 4767–4778 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Matyushov, D. V. Electrophoretic mobility without charge driven by polarisation of the nanoparticle–water interface. Mol. Phys. 112, 2029–2039 (2014).Article 
ADS 
CAS 

Google Scholar 
Bouzigues, C. I., Tabeling, P. & Bocquet, L. Nanofluidics in the debye layer at hydrophilic and hydrophobic surfaces. Phys. Rev. Lett. 101, 114503 (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Huang, D. M., Sendner, C., Horinek, D., Netz, R. R. & Bocquet, L. Water slippage versus contact angle: a quasiuniversal relationship. Phys. Rev. Lett. 101, 226101 (2008).Article 
ADS 
PubMed 

Google Scholar 
Geng, X. et al. Slip length and structure of liquid water flowing past atomistic smooth charged walls. Sci. Rep. 9, 18957 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ohshima, H. Electrophoretic mobility of a liquid drop with a slip surface. Colloid Polym. Sci. 299, 1353–1356 (2021).Article 
CAS 

Google Scholar 
Kavokine, N., Bocquet, M.-L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Mahapatra, P., Ohshima, H. & Gopmandal, P. P. Effect of hydrodynamic slip on the electrophoresis of hydrophobic spherical particles in a solution of general electrolytes. Colloid Polym. Sci. 300, 1311–1325 (2022).Article 
CAS 

Google Scholar 
Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Secchi, E., Niguès, A., Jubin, L., Siria, A. & Bocquet, L. Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes. Phys. Rev. Lett. 116, 154501 (2016).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Hong, S. et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 17, 728–732 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Agmon, N. et al. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116, 7642–7672 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Beattie, J. K. & Djerdjev, A. M. The pristine oil/water interface: surfactant-free hydroxide-charged emulsions. Angew. Chem. Int Ed. 43, 3568–3571 (2004).Article 
CAS 

Google Scholar 
Jabloński, J., Janusz, W. & Szczypa, J. Adsorption properties of the stearic acid-octadecane particles in aqueous solutions. J. Dispers. Sci. Technol. 20, 165–175 (1999).Article 

Google Scholar 
Li, C. & Somasundaran, P. Reversal of bubble charge in multivalent inorganic salt solutions—effect of magnesium. J. Colloid Interface Sci. 146, 215–218 (1991).Article 
ADS 
CAS 

Google Scholar 
Lützenkirchen, J., Preočanin, T. & Kallay, N. A macroscopic water structure based model for describing charging phenomena at inert hydrophobic surfaces in aqueous electrolyte solutions. Phys. Chem. Chem. Phys. 10, 4946–4955 (2008).Article 
PubMed 

Google Scholar 
Marinova, K. G. et al. Charging of oil−water interfaces due to spontaneous adsorption of hydroxyl ions. Langmuir 12, 2045–2051 (1996).Article 
CAS 

Google Scholar 
Yang, C., Dabros, T., Li, D., Czarnecki, J. & Masliyah, J. H. Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method. J. Colloid Interface Sci. 243, 128–135 (2001).Article 
ADS 
CAS 

Google Scholar 
Snapp, P. et al. Interaction of 2D materials with liquids: wettability, electrochemical properties, friction, and emerging directions. NPG Asia Mater. 12, 22 (2020).Article 

Google Scholar 
Kunz, W. Specific Ion Effects (WORLD SCIENTIFIC, 2009).Yan, X. et al. Central role of bicarbonate anions in charging water/hydrophobic interfaces. J. Phys. Chem. Lett. 9, 96–103 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Roger, K. & Cabane, B. Why are hydrophobic/water interfaces negatively charged? Angew. Chem. Int Ed. 51, 5625–5628 (2012).Article 
CAS 

Google Scholar 
Uematsu, Y., Bonthuis, D. J. & Netz, R. R. Nanomolar surface-active charged impurities account for the zeta potential of hydrophobic surfaces. Langmuir 36, 3645–3658 (2020).Article 
CAS 
PubMed 

Google Scholar 
Jena, K. C., Scheu, R. & Roke, S. Surface impurities are not responsible for the charge on the oil/water interface: a comment. Angew. Chem. Int Ed. 51, 12938–12940 (2012).Article 
CAS 

Google Scholar 
Pullanchery, S., Kulik, S., Rehl, B., Hassanali, A. & Roke, S. Charge transfer across C–H⋅⋅⋅O hydrogen bonds stabilizes oil droplets in water. Science 374, 1366–1370 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Samson, J.-S., Scheu, R., Smolentsev, N., Rick, S. W. & Roke, S. Sum frequency spectroscopy of the hydrophobic nanodroplet/water interface: Absence of hydroxyl ion and dangling OH bond signatures. Chem. Phys. Lett. 615, 124–131 (2014).Article 
ADS 
CAS 

Google Scholar 
de Aguiar, H. B., de Beer, A. G. F., Strader, M. L. & Roke, S. The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant. J. Am. Chem. Soc. 132, 2122–2123 (2010).Article 
PubMed 

Google Scholar 
Poli, E., Jong, K. H. & Hassanali, A. Charge transfer as a ubiquitous mechanism in determining the negative charge at hydrophobic interfaces. Nat. Commun. 11, 901 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tuckerman, M. E., Chandra, A. & Marx, D. Structure and dynamics of OH-(aq). Acc. Chem. Res 39, 151–158 (2006).Article 
CAS 
PubMed 

Google Scholar 
Agmon, N. The grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).Article 
ADS 
CAS 

Google Scholar 
Lütgebaucks, C., Gonella, G. & Roke, S. Optical label-free and model-free probe of the surface potential of nanoscale and microscopic objects in aqueous solution. Phys. Rev. B 94, 195410 (2016).Article 
ADS 

Google Scholar 
de Beer, A. G. F., Campen, R. K. & Roke, S. Separating surface structure and surface charge with second-harmonic and sum-frequency scattering. Phys. Rev. B 82, 235431 (2010).Article 
ADS 

Google Scholar 
Bischoff, M., Biriukov, D., Předota, M., Roke, S. & Marchioro, A. Surface potential and interfacial water order at the amorphous TiO2 nanoparticle/aqueous interface. J. Phys. Chem. C 124, 10961–10974 (2020).Article 
CAS 

Google Scholar 
Marchioro, A. et al. Surface characterization of colloidal silica nanoparticles by second harmonic scattering: quantifying the surface potential and interfacial water order. J. Phys. Chem. C 123, 20393–20404 (2019).Article 
CAS 

Google Scholar 
Pullanchery, S., Kulik, S., Okur, H. I., de Aguiar, H. B. & Roke, S. On the stability and necessary electrophoretic mobility of bare oil nanodroplets in water. J. Chem. Phys. 152, 241104 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
de Aguiar, H. B., Samson, J.-S. & Roke, S. Probing nanoscopic droplet interfaces in aqueous solution with vibrational sum-frequency scattering: a study of the effects of path length, droplet density and pulse energy. Chem. Phys. Lett. 512, 76–80 (2011).Article 
ADS 

Google Scholar 
Pullanchery, S., Kulik, S. & Roke, S. Water structure at the hydrophobic nanodroplet surface revealed by vibrational sum frequency scattering using isotopic dilution. J. Phys. Chem. B. 126, 3186–3192 (2022).Chen, Y., Jena, K. C., Lütgebaucks, C., Okur, H. I., Roke, S. Three dimensional nano “Langmuir Trough” for lipid studies. Nano Lett. 15, 5558– (2015).Yang, S. et al. Stabilization of hydroxide ions at the interface of a hydrophobic monolayer on water via reduced proton transfer. Phys. Rev. Lett. 125, 156803 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Bredt, A. J., Kim, Y., Mendes de Oliveira, D., Urbina, A. S., Slipchenko, L. V. & Ben-Amotz, D. Expulsion of hydroxide Ions from methyl hydration shells. J. Phys. Chem. B. 126, 869–877 (2022).Hait, D. & Head-Gordon, M. Delocalization errors in density functional theory are essentially quadratic in fractional occupation number. J. Phys. Chem. Lett. 9, 6280–6288 (2018).Article 
CAS 
PubMed 

Google Scholar 
Perdew, J. P., Parr, R. G., Levy, M. & Balduz, J. L. Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49, 1691–1694 (1982).Article 
ADS 
CAS 

Google Scholar 
Zhang, Y. & Yang, W. A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons. J. Chem. Phys. 109, 2604–2608 (1998).Article 
ADS 
CAS 

Google Scholar 
Horn, P. R., Mao, Y. & Head-Gordon, M. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 18, 23067–23079 (2016).Article 
CAS 
PubMed 

Google Scholar 
Horn, P. R., Mao, Y. & Head-Gordon, M. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies. J. Chem. Phys. 144, 114107 (2016).Article 
ADS 
PubMed 

Google Scholar 
Khaliullin, R. Z., Cobar, E. A., Lochan, R. C., Bell, A. T. & Head-Gordon, M. Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J. Phys. Chem. A 111, 8753–8765 (2007).Article 
CAS 
PubMed 

Google Scholar 
Horn, P. R. & Head-Gordon, M. Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions. J. Chem. Phys. 143, 114111 (2015).Article 
ADS 
PubMed 

Google Scholar 
Mardirossian, N. & Head-Gordon, M. Mapping the genome of meta-generalized gradient approximation density functionals: the search for B97M-V. J. Chem. Phys. 142, 074111 (2015).Article 
ADS 
PubMed 

Google Scholar 
Mardirossian, N. & Head-Gordon, M. ωB97M-V: a combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 144, 214110 (2016).Article 
ADS 
PubMed 

Google Scholar 
Dunning, T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).Article 
ADS 
CAS 

Google Scholar 
Jackson, J. D. Classical Electrodynamics. Third edition. (Wiley, 1999).Crespo, Y. & Hassanali, A. Unveiling the Janus-like properties of OH. J. Phys. Chem. Lett. 6, 272–278 (2015).Article 
CAS 
PubMed 

Google Scholar 
Haynes, W. M. (Ed.). CRC Handbook of Chemistry and Physics.95th edition. (CRC Press, 2014)Sarno, B., Heineck, D., Heller, M. J. & Ibsen, S. D. Dielectrophoresis: developments and applications from 2010 to 2020. Electrophoresis 42, 539–564 (2021).Article 
CAS 
PubMed 

Google Scholar 
Huang, L., Zhao, P., Liang, F. & Wang, W. Methods Cell Biol. (eds Fletcher D. A., Doh J., Piel M.) (Academic Press, 2018).Bigelow, W. C., Pickett, D. L. & Zisman, W. A. Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. J. Colloid Sci. 1, 513–538 (1946).Article 
CAS 

Google Scholar 
Ohshima, H. A simple expression for henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J. Colloid Interface Sci. 168, 269–271 (1994).Article 
ADS 
CAS 

Google Scholar 
Chen, Y. et al. Electrolytes induce long-range orientational order and free energy changes in the H-bond network of bulk water. Sci Adv 2, e1501891.Kulik, S., Pullanchery, S. & Roke, S. Vibrational sum frequency scattering in absorptive media: a theoretical case study of nano-objects in water. J. Phys. Chem. C 124, 23078–23085 (2020).Article 
CAS 

Google Scholar 
Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package – quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).Article 
ADS 
PubMed 

Google Scholar 
Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).Article 
ADS 
MathSciNet 

Google Scholar 
King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).Article 
ADS 
CAS 

Google Scholar 
Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994).Article 
ADS 
CAS 

Google Scholar 
Umari, P. & Pasquarello, A. Ab initio molecular dynamics in a finite homogeneous electric field. Phys. Rev. Lett. 89, 157602 (2002).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Cassone, G. Nuclear quantum effects largely influence molecular dissociation and proton transfer in liquid water under an electric field. J. Phys. Chem. Lett. 11, 8983–8988 (2020).Article 
CAS 
PubMed 

Google Scholar 
Cassone, G., Sponer, J., Trusso, S. & Saija, F. Ab initio spectroscopy of water under electric fields. Phys. Chem. Chem. Phys. 21, 21205–21212 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chattopadhyay, A. & Boxer, S. G. Vibrational Stark effect spectroscopy. J. Am. Chem. Soc. 117, 1449–1450 (1995).Article 
CAS 

Google Scholar 
Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114, 145–152 (2005).Article 
CAS 

Google Scholar 
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).Article 
ADS 
CAS 

Google Scholar 
Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).Article 
ADS 
CAS 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).Article 
ADS 
PubMed 

Google Scholar 
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).Article 
CAS 
PubMed 

Google Scholar 
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).Article 
ADS 
PubMed 

Google Scholar 
Heindel, J. P. & Xantheas, S. S. The many-body expansion for aqueous systems revisited: I. water–water interactions. J. Chem. Theory Comput. 16, 6843–6855 (2020).Article 
CAS 
PubMed 

Google Scholar 
Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 155, 84801 (2021).

Hot Topics

Related Articles