Systems modeling of oncogenic G-protein and GPCR signaling reveals unexpected differences in downstream pathway activation

Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).Article 
CAS 
PubMed 

Google Scholar 
Shipp, M. A. et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8, 68–74 (2002).Article 
CAS 
PubMed 

Google Scholar 
Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA 104, 20007–20012 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cancer Genome Atlas Research. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).Article 

Google Scholar 
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marty, R. et al. MHC-I genotype restricts the oncogenic mutational landscape. Cell 171, 1272–1283.e1215 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stites, E. C., Trampont, P. C., Ma, Z. & Ravichandran, K. S. Network analysis of oncogenic Ras activation in cancer. Science 318, 463–467 (2007).Article 
CAS 
PubMed 

Google Scholar 
Stites, E. C., Trampont, P. C., Haney, L. B., Walk, S. F. & Ravichandran, K. S. Cooperation between noncanonical Ras network mutations. Cell Rep. 10, 307–316 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stites, E. C. & Shaw, A. S. Quantitative systems pharmacology analysis of KRAS G12C covalent inhibitors. CPT Pharmacomet. Syst. Pharm. 7, 342–351 (2018).Article 
CAS 

Google Scholar 
McFall, T. et al. A systems mechanism for KRAS mutant allele-specific responses to targeted therapy. Sci. Signal. 12, eaaw8288 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McFall, T., Schomburg, N. K., Rossman, K. L. & Stites, E. C. Discernment between candidate mechanisms for KRAS G13D colorectal cancer sensitivity to EGFR inhibitors. Cell Commun. Signal. 18, 179 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McFall, T. & Stites, E. C. Identification of RAS mutant biomarkers for EGFR inhibitor sensitivity using a systems biochemical approach. Cell Rep. 37, 110096 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McFall, T. et al. Co-targeting KRAS G12C and EGFR reduces both mutant and wild-type RAS-GTP. NPJ Precis. Oncol. 6, 86 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wey, M., Lee, J., Jeong, S. S., Kim, J. & Heo, J. Kinetic mechanisms of mutation-dependent Harvey Ras activation and their relevance for the development of Costello syndrome. Biochemistry 52, 8465–8479 (2013).Article 
CAS 
PubMed 

Google Scholar 
Hunter, J. C. et al. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol. Cancer Res. 13, 1325–1335 (2015).Article 
CAS 
PubMed 

Google Scholar 
Donovan, S., Shannon, K. M. & Bollag, G. GTPase activating proteins: critical regulators of intracellular signaling. Biochim. Biophys. Acta 1602, 23–45 (2002).CAS 
PubMed 

Google Scholar 
Stites, E. C. & Ravichandran, K. S. Mechanistic modeling to investigate signaling by oncogenic Ras mutants. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 117–127 (2012).Article 
CAS 
PubMed 

Google Scholar 
Stites, E. C. & Ravichandran, K. S. Mathematical investigation of how oncogenic ras mutants promote ras signaling. Methods Mol. Biol. 880, 69–85 (2012).Article 
CAS 
PubMed 

Google Scholar 
Stites, E. C. Chemical kinetic mechanistic models to investigate cancer biology and impact cancer medicine. Phys. Biol. 10, 026004 (2013).Article 
CAS 
PubMed 

Google Scholar 
McFall, T. & Stites, E. C. A mechanism for the response of KRAS(G13D) expressing colorectal cancers to EGFR inhibitors. Mol. Cell Oncol. 7, 1701914 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Markevich, N. I. et al. Signal processing at the Ras circuit: what shapes Ras activation patterns? Syst. Biol. 1, 104–113 (2004).Article 
CAS 

Google Scholar 
Kiel, C. & Serrano, L. Cell type-specific importance of ras-c-raf complex association rate constants for MAPK signaling. Sci. Signal. 2, ra38 (2009).Article 
PubMed 

Google Scholar 
Wolf, J., Dronov, S., Tobin, F. & Goryanin, I. The impact of the regulatory design on the response of epidermal growth factor receptor-mediated signal transduction towards oncogenic mutations. FEBS J. 274, 5505–5517 (2007).Article 
CAS 
PubMed 

Google Scholar 
Saucerman, J. J., Healy, S. N., Belik, M. E., Puglisi, J. L. & McCulloch, A. D. Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation: computational models of whole cells and heterogeneous tissue. Circ. Res. 95, 1216–1224 (2004).Article 
CAS 
PubMed 

Google Scholar 
Lew, E. D., Furdui, C. M., Anderson, K. S. & Schlessinger, J. The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci. Signal. 2, ra6 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Yeung, E. et al. Inference of multisite phosphorylation rate constants and their modulation by pathogenic mutations. Curr. Biol. 30, 877–882.e876 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zewde, N. & Morikis, D. A computational model for the evaluation of complement system regulation under homeostasis, disease, and drug intervention. PLoS ONE 13, e0198644 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Kraikivski, P., Chen, K. C., Laomettachit, T., Murali, T. M. & Tyson, J. J. From START to FINISH: computational analysis of cell cycle control in budding yeast. NPJ Syst. Biol. Appl. 1, 15016 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Benary, U., Kofahl, B., Hecht, A. & Wolf, J. Modeling Wnt/beta-catenin target gene expression in APC and Wnt gradients under wild type and mutant conditions. Front Physiol. 4, 21 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Mitchell, S., Tsui, R., Tan, Z. C., Pack, A. & Hoffmann, A. The NF-kappaB multidimer system model: a knowledge base to explore diverse biological contexts. Sci. Signal. 16, eabo2838 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Basak, S. et al. A fourth IkappaB protein within the NF-kappaB signaling module. Cell 128, 369–381 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, J., Yue, H. & Ouyang, Q. Correlation between oncogenic mutations and parameter sensitivity of the apoptosis pathway model. PLoS Comput. Biol. 10, e1003451 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Benedict, K. F. et al. Systems analysis of small signaling modules relevant to eight human diseases. Ann. Biomed. Eng. 39, 621–635 (2011).Article 
PubMed 

Google Scholar 
Krantz, B. A., Dave, N., Komatsubara, K. M., Marr, B. P. & Carvajal, R. D. Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin. Ophthalmol. 11, 279–289 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Takasaki, J. et al. A novel Galphaq/11-selective inhibitor. J. Biol. Chem. 279, 47438–47445 (2004).Article 
CAS 
PubMed 

Google Scholar 
Schrage, R. et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat. Commun. 6, 10156 (2015).Article 
CAS 
PubMed 

Google Scholar 
Onken, M. D. et al. Targeting nucleotide exchange to inhibit constitutively active G protein alpha subunits in cancer cells. Sci. Signal. 11, eaao6852 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Annala, S. et al. Direct targeting of Galpha(q) and Galpha(11) oncoproteins in cancer cells. Sci. Signal. 12, eaau5948 (2019).Article 
PubMed 

Google Scholar 
Yang, J., Manson, D. K., Marr, B. P. & Carvajal, R. D. Treatment of uveal melanoma: where are we now? Ther. Adv. Med. Oncol. 10, 1758834018757175 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Jenkins, R. W. & Fisher, D. E. Treatment of advanced melanoma in 2020 and beyond. J. Investig. Dermatol. 141, 23–31 (2021).Article 
CAS 
PubMed 

Google Scholar 
Nathan, P. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 385, 1196–1206 (2021).Article 
CAS 
PubMed 

Google Scholar 
Oldham, W. M. & Hamm, H. E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 (2008).Article 
CAS 
PubMed 

Google Scholar 
Robertson, A. G. et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32, 204–220.e215 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maziarz, M. et al. Atypical activation of the G protein Galpha(q) by the oncogenic mutation Q209P. J. Biol. Chem. 293, 19586–19599 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Linderman, J. J. Modeling of G-protein-coupled receptor signaling pathways. J. Biol. Chem. 284, 5427–5431 (2009).Article 
CAS 
PubMed 

Google Scholar 
Turcotte, M., Tang, W. & Ross, E. M. Coordinate regulation of G protein signaling via dynamic interactions of receptor and GAP. PLoS Comput. Biol. 4, e1000148 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Katanaev, V. L. & Chornomorets, M. Kinetic diversity in G-protein-coupled receptor signalling. Biochem. J. 401, 485–495 (2007).Article 
CAS 
PubMed 

Google Scholar 
Feng, X. et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25, 831–845 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Feng, X. et al. A platform of synthetic lethal gene interaction networks reveals that the GNAQ uveal melanoma oncogene controls the hippo pathway through FAK. Cancer Cell 35, 457–472.e455 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Carvajal, R. D. et al. Advances in the clinical management of uveal melanoma. Nat. Rev. Clin. Oncol. 20, 99–115 (2023).Article 
PubMed 

Google Scholar 
Mukhopadhyay, S. & Ross, E. M. Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins. Proc. Natl Acad. Sci. USA 96, 9539–9544 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wingler, L. M. et al. Angiotensin analogs with divergent bias stabilize distinct receptor conformations. Cell 176, 468–478.e411 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).Article 
PubMed 

Google Scholar 
Patt, J. et al. An experimental strategy to probe Gq contribution to signal transduction in living cells. J. Biol. Chem. 296, 100472 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lito, P., Solomon, M., Li, L. S., Hansen, R. & Rosen, N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 351, 604–608 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ma, J., Weng, L., Bastian, B. C. & Chen, X. Functional characterization of uveal melanoma oncogenes. Oncogene 40, 806–820 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chidiac, P. & Ross, E. M. Phospholipase C-beta1 directly accelerates GTP hydrolysis by Galphaq and acceleration is inhibited by Gbeta gamma subunits. J. Biol. Chem. 274, 19639–19643 (1999).Article 
CAS 
PubMed 

Google Scholar 
Moore, A. R. et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet. 48, 675–680 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nell, R. J. et al. Involvement of mutant and wild-type CYSLTR2 in the development and progression of uveal nevi and melanoma. BMC Cancer 21, 164 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Johansson, P. et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 7, 4624–4631 (2016).Article 
PubMed 

Google Scholar 
Moore, A. R. et al. GNA11 Q209L mouse model reveals RasGRP3 as an essential signaling node in uveal melanoma. Cell Rep. 22, 2455–2468 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Slater, K. et al. Evaluation of oncogenic cysteinyl leukotriene receptor 2 as a therapeutic target for uveal melanoma. Cancer Metastasis Rev. 37, 335–345 (2018).Article 
CAS 
PubMed 

Google Scholar 
Ceraudo, E. et al. Direct evidence that the GPCR CysLTR2 mutant causative of uveal melanoma is constitutively active with highly biased signaling. J. Biol. Chem. 296, 100163 (2021).Article 
CAS 
PubMed 

Google Scholar 
Shirley, M. D. et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N. Engl. J. Med. 368, 1971–1979 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).Article 
CAS 
PubMed 

Google Scholar 
Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).Article 
CAS 
PubMed 

Google Scholar 
Field, M. G. et al. PRAME as an Independent Biomarker for Metastasis in Uveal Melanoma. Clin. Cancer Res. 22, 1234–1242 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gene Ontology, C. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).Article 

Google Scholar 
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).Article 
CAS 
PubMed 

Google Scholar 
Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020).CAS 
PubMed 

Google Scholar 
Worzfeld, T. & Offermanns, S. Semaphorins and plexins as therapeutic targets. Nat. Rev. Drug Discov. 13, 603–621 (2014).Article 
CAS 
PubMed 

Google Scholar 
Sakurai, A. et al. Semaphorin 3E initiates antiangiogenic signaling through plexin D1 by regulating Arf6 and R-Ras. Mol. Cell Biol. 30, 3086–3098 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ng, T. et al. Class 3 semaphorin mediates dendrite growth in adult newborn neurons through Cdk5/FAK pathway. PLoS One 8, e65572 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bechara, A. et al. FAK-MAPK-dependent adhesion disassembly downstream of L1 contributes to semaphorin3A-induced collapse. EMBO J. 27, 1549–1562 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Field, M. G. et al. BAP1 loss is associated with DNA methylomic repatterning in highly aggressive class 2 uveal melanomas. Clin. Cancer Res. 25, 5663–5673 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Urtatiz, O., Haage, A., Tanentzapf, G. & Van Raamsdonk, C. D. Crosstalk with keratinocytes causes GNAQ oncogene specificity in melanoma. Elife 10, e71825 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Johansson, P. A. et al. Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours. Nat. Commun. 11, 2408 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Argast, G. M. et al. Plexin B1 is repressed by oncogenic B-Raf signaling and functions as a tumor suppressor in melanoma cells. Oncogene 28, 2697–2709 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chakraborty, G., Kumar, S., Mishra, R., Patil, T. V. & Kundu, G. C. Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model. PLoS ONE 7, e33633 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stevens, L. et al. Plexin B1 suppresses c-Met in melanoma: a role for plexin B1 as a tumor-suppressor protein through regulation of c-Met. J. Investig. Dermatol. 130, 1636–1645 (2010).Article 
CAS 
PubMed 

Google Scholar 
Paradis, J. S. et al. Synthetic lethal screens reveal cotargeting FAK and MEK as a multimodal precision therapy for GNAQ-driven uveal melanoma. Clin. Cancer Res. 27, 3190–3200 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wong, O. G. et al. Plexin-B1 mutations in prostate cancer. Proc. Natl Acad. Sci. USA 104, 19040–19045 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Balakrishnan, A. et al. Molecular profiling of the “plexinome” in melanoma and pancreatic cancer. Hum. Mutat. 30, 1167–1174 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 45, 933–936 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Diederichs, S. et al. The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol. Med. 8, 442–457 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jung, H., Lee, K. S. & Choi, J. K. Comprehensive characterisation of intronic mis-splicing mutations in human cancers. Oncogene 40, 1347–1361 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lyon, A. M. & Tesmer, J. J. Structural insights into phospholipase C-beta function. Mol. Pharm. 84, 488–500 (2013).Article 
CAS 

Google Scholar 
Navaratnarajah, P., Gershenson, A. & Ross, E. M. The binding of activated Galpha(q) to phospholipase C-beta exhibits anomalous affinity. J. Biol. Chem. 292, 16787–16801 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gutenkunst, R. N. et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3, 1871–1878 (2007).Article 
CAS 
PubMed 

Google Scholar 
Bender, R. J. & Mac Gabhann, F. Dysregulation of the vascular endothelial growth factor and semaphorin ligand-receptor families in prostate cancer metastasis. BMC Syst. Biol. 9, 55 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, L., Polyansky, A. & Buck, M. Modeling transmembrane domain dimers/trimers of plexin receptors: implications for mechanisms of signal transmission across the membrane. PLoS ONE 10, e0121513 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Calmelet, C., Madamanchi, A. & Zutter, M. Multiscale coupled modeling of Plexin-D1 and notch signaling in retinal sprouting angiogenesis. J. Coupled Syst. Multiscale Dyn. 5, 1–17 (2017).Article 

Google Scholar 
Tanaka, T. et al. Hybrid in vitro/in silico analysis of low-affinity protein-protein interactions that regulate signal transduction by Sema6D. Protein Sci. 31, e4452 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sakumura, Y., Tsukada, Y., Yamamoto, N. & Ishii, S. A molecular model for axon guidance based on cross talk between rho GTPases. Biophys. J. 89, 812–822 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, Q. & Shokat, K. M. Disease-causing mutations in the G protein Galphas subvert the roles of GDP and GTP. Cell 173, 1254–1264.e1211 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Q. et al. Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1. Nature 595, 600–605 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Masuho, I. et al. A global map of G protein signaling regulation by RGS proteins. Cell 183, 503–521.e519 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933–1947.e1925 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gremer, L. et al. Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum. Mutat. 32, 33–43 (2011).Article 
CAS 
PubMed 

Google Scholar 
Kiel, C. & Serrano, L. Structure-energy-based predictions and network modelling of RASopathy and cancer missense mutations. Mol. Syst. Biol. 10, 727 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Gillies, T. E. et al. Oncogenic mutant RAS signaling activity is rescaled by the ERK/MAPK pathway. Mol. Syst. Biol. 16, e9518 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moller, I. et al. Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi. Mod. Pathol. 30, 350–356 (2017).Article 
PubMed 

Google Scholar 
Goto, K., Pissaloux, D., Paindavoine, S., Tirode, F. & de la Fouchardiere, A. CYSLTR2-mutant Cutaneous melanocytic neoplasms frequently simulate “pigmented epithelioid melanocytoma,” expanding the morphologic spectrum of blue tumors: a clinicopathologic study of 7 cases. Am. J. Surg. Pathol. 43, 1368–1376 (2019).Article 
PubMed 

Google Scholar 
van de Nes, J. et al. Targeted next generation sequencing reveals unique mutation profile of primary melanocytic tumors of the central nervous system. J. Neurooncol. 127, 435–444 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Kusters-Vandevelde, H. V. N. et al. Whole-exome sequencing of a meningeal melanocytic tumour reveals activating CYSLTR2 and EIF1AX hotspot mutations and similarities to uveal melanoma. Brain Tumor Pathol. 35, 127–130 (2018).Article 
PubMed 

Google Scholar 
van de Nes, J. A. P. et al. Activating CYSLTR2 and PLCB4 mutations in primary leptomeningeal melanocytic tumors. J. Investig. Dermatol. 137, 2033–2035 (2017).Article 
PubMed 

Google Scholar 
Zhou, J. et al. Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat. Genet. 53, 1360–1372 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Akin-Bali, D. F. Bioinformatics analysis of GNAQ, GNA11, BAP1, SF3B1,SRSF2, EIF1AX, PLCB4, and CYSLTR2 genes and their role in the pathogenesis of uveal melanoma. Ophthalmic Genet. 42, 732–743 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yang, J. H. et al. A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell 177, 1649–1661.e1649 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
AlQuraishi, M. & Sorger, P. K. Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms. Nat. Methods 18, 1169–1180 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Herman, J. & Usher, W. SALib: an open-source Python library for sensitivity analysis. J. Open Source Softw. 2, 97 (2017).Article 

Google Scholar 
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article 
CAS 
PubMed 

Google Scholar 
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–W205 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles