A new leaf essential oil from the Andean species Gynoxys szyszylowiczii Hieron. of southern Ecuador: chemical and enantioselective analyses

UNEP-WCMC Megadiverse Countries. https://www.biodiversitya-z.org/content/megadiverse-countries (accessed on 13 November 2023).Malagón, O. et al. Phytochemistry and ethnopharmacology of the Ecuadorian flora. A review. Nat. Prod. Commun. 11, 297–314 (2016).PubMed 

Google Scholar 
Armijos, C., Ramírez, J., Salinas, M., Vidari, G. & Suárez, A. I. Pharmacology and phytochemistry of Ecuadorian medicinal plants: An update and perspectives. Pharmaceuticals 14, 1145. https://doi.org/10.3390/ph14111145 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chiriboga, X. et al. New anthracene derivatives from Coussarea macrophylla. J. Nat. Prod. 66, 905–909 (2003).Article 
CAS 
PubMed 

Google Scholar 
Gilardoni, G., Chiriboga, X., Finzi, P. V. & Vidari, G. New 3,4-secocycloartane and 3,4-secodammarane triterpenes from the Ecuadorian plant Coussarea macrophylla. Chem. Biodivers. 12, 946–954 (2015).Article 
CAS 
PubMed 

Google Scholar 
Vivanco, K., Montesinos, J. V., Cumbicus, N., Malagón, O. & Gilardoni, G. The essential oil from leaves of Mauria heterophylla Kunth (Anacardiaceae): Chemical and enantioselective analyses. J. Essent. Oil. Res. https://doi.org/10.1080/10412905.2023.2266430 (2023).Article 

Google Scholar 
Maldonado, Y. E., Malagón, O., Cumbicus, N. & Gilardoni, G. A new essential oil from the native Ecuadorian species Steiractinia sodiroi (Hieron.) S.F. Blake (Asteraceae): Chemical and enantioselective analyses. Sci. Rep. 13, 17180 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gilardoni, G., Montalván, M., Ortiz, M., Vinueza, D. & Montesinos, J. V. The flower essential oil of Dalea mutisii Kunth (Fabaceae) from Ecuador chemical, enantioselective, and olfactometric analyses. Plants 9, 1403. https://doi.org/10.3390/plants9101403 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ramírez, J. et al. Chemical composition, enantiomeric analysis, AEDA sensorial evaluation and antifungal activity of the essential oil from the Ecuadorian plant Lepechinia mutica Benth (Lamiaceae). Chem. Biodivers. 14, e1700292. https://doi.org/10.1002/cbdv.201700292 (2017).Article 
CAS 

Google Scholar 
Malagón, O., Cartuche, P., Montaño, A., Cumbicus, N. & Gilardoni, G. A new essential oil from the leaves of the endemic Andean species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and enantioselective analyses. Plants 11, 398. https://doi.org/10.3390/plants11030398 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maldonado, Y. E., Malagón, O., Cumbicus, N. & Gilardoni, G. A new essential oil from the leaves of Gynoxys rugulosa Muschl. (Asteraceae) growing in southern Ecuador: Chemical and enantioselective analyses. Plants 12, 849. https://doi.org/10.3390/plants12040849 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cumbicus, C., Malagón, O., Cumbicus, N. & Gilardoni, G. The leaf essential oil of Gynoxys buxifolia (Kunth) Cass. (Asteraceae): A good source of furanoeremophilane and bakkenolide A. Plants 12, 1323. https://doi.org/10.3390/plants12061323 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gilardoni, G., Lara, L. R., Cumbicus, N. & Malagón, O. A new leaf essential oil from endemic Gynoxys laurifolia (Kunth) Cass. of southern Ecuador: Chemical and enantioselective analyses. Plants 12, 2878. https://doi.org/10.3390/plants12152878 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
WFO Plant List: https://wfoplantlist.org/plant-list/taxon/wfo-0000088383-2023-06?page=1 (accessed on 13 November 2023).Tropicos.org. Missouri Botanical Garden. Available online: https://www.tropicos.org (accessed on 13 November 2023).Jorgensen, P., Leon-Yanez, S. Catalogue of the Vascular Plants of Ecuador 309 (Missouri Botanical Garden Press, 1999).Hieronymus, G. H. Plantae peruvianae a claro Constantino de Jelski collectae. Compositae. Bot. Jahrb. Syst. 36, 505 (1905).
Google Scholar 
Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry 4th edn. (Allured Publishing Corporation, 2007).
Google Scholar 
Gancel, A.-L. et al. Leaf volatile compounds of six citrus somatic allotetraploid hybrids originating from various combinations of lime, lemon, citron, sweet orange, and grapefruit. J. Agric. Food Chem. 53(6), 2224–2230. https://doi.org/10.1021/jf048315b (2005).Article 
CAS 
PubMed 

Google Scholar 
Fernandez-Segovia, I., Escriche, I., Gomez-Sintes, M., Fuentes, A. & Serra, J. A. Influence of different preservation treatments on the volatile fraction of desalted cod. Food Chem. 98(3), 473–482. https://doi.org/10.1016/j.foodchem.2005.06.021 (2006).Article 
CAS 

Google Scholar 
Duque, C., Bonilla, A., Bautista, E. & Zea, S. Exudation of low molecular weight compounds (thiobismethane, methyl isocyanide, and methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix. Biochem. Syst. Ecol. 59(5), 459–467. https://doi.org/10.1016/S0305-1978(00)00081-8 (2001).Article 

Google Scholar 
Rega, B., Fournier, N., Nicklaus, S. & Guichard, E. Role of pulp in flavor release and sensory perception in orange juice. J. Agric. Food Chem. 52(12), 4204–4212. https://doi.org/10.1021/jf035361n (2004).Article 
CAS 
PubMed 

Google Scholar 
Vichi, S., Pizzale, L., Conte, L. S., Buxaderas, S. & López-Tamames, E. Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: characterization of virgin olive oils from two distinct geographical areas of Northern Italy. J. Agric. Food Chem. 51(22), 6572–6577. https://doi.org/10.1021/jf030269c (2003).Article 
CAS 
PubMed 

Google Scholar 
Zheng, C. H., Kim, K. H., Kim, T. H. & Lee, H. J. Analysis and characterization of aroma-active compounds of Schizandra chinensis (omija) leaves. J. Sci. Food Agric. 85(1), 161–166. https://doi.org/10.1002/jsfa.1975 (2005).Article 
CAS 

Google Scholar 
Mahajan, S. S., Goddik, L. & Qian, M. C. Aroma compounds in sweet why powder. J. Dairy Sci. 87(12), 4057–4063. https://doi.org/10.3168/jds.S0022-0302(04)73547-X (2004).Article 
CAS 
PubMed 

Google Scholar 
Kotseridis, Y. & Baumes, R. Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. J. Agric. Food Chem. 48(2), 400–406. https://doi.org/10.1021/jf990565i (2000).Article 
CAS 
PubMed 

Google Scholar 
Chen, C.-C., Kuo, M.-C., Lui, S.-E. & Wu, C.-M. Volatile components of salted and pickled prunes (Prunus mume Sieb. et Zucc). J. Agric. Food Chem. 34(1), 140–144. https://doi.org/10.1021/jf00067a038 (1986).Article 
CAS 

Google Scholar 
Vinogradov, B.A. Production, composition, properties and application of essential oils. http://viness.narod.ru (2004).Kim, T. H., Thuy, N. T., Shin, J. H., Beak, H. H. & Lee, H. J. Aroma-active compounds of miniature beefsteak plant (Mosla dianthera Maxim.). J. Agric. Food Chem. 48(7), 2877–2881. https://doi.org/10.1021/jf000219x (2000).Article 
CAS 
PubMed 

Google Scholar 
Paniandy, J.-C., Chane-Ming, J. & Pierbattesti, J.-C. Chemical composition of the essential oil and headspace solid-phase microextraction of the guava fruit (Psidium guajava L.). J. Essent. Oil Res. 22(12), 153–158. https://doi.org/10.1080/14786410802055568 (2000).Article 
CAS 

Google Scholar 
Ferretti, G., Maggi, F. & Tirillini, B. Essential oil composition of Hypericum richeri Vill. from Italy. Flavour Fragr. J. 20(3), 295–398. https://doi.org/10.1002/ffj.1412 (2005).Article 
CAS 

Google Scholar 
Bortolomeazzi, R., Berno, P., Pizzale, L. & Conte, L. S. Sesquiterpene, alkene, and alkane hydrocarbons in virgin olive oils of different varieties and geographical origins. J. Agric. Food Chem. 49(7), 3278–3283. https://doi.org/10.1021/jf001271w (2001).Article 
CAS 
PubMed 

Google Scholar 
Bendiabdellah, A. et al. Biological activities and volatile constituents of Daucus muricatus L. from Algeria. Chem. Centr. J. 6(48), 1–22. https://doi.org/10.1186/1752-153X-6-48 (2012).Article 
CAS 

Google Scholar 
Ferhat, M. A., Meklati, B. Y. & Chemat, F. Comparison of different isolation methods of essential oil from Citrus fruits: Cold pressing, hydrodistillation and microwave dry distillation. Flavour Fragr. J. 22(6), 494–504. https://doi.org/10.1002/ffj.1829 (2007).Article 
CAS 

Google Scholar 
Yu, E. J., Kim, T. H., Kim, K. H. & Lee, H. J. Characterization of aroma-active compounds of Abies nephrolepis (Khingan fir) needles using aroma extract dilution analysis. Flavour Fragr. J. 19(1), 74–79. https://doi.org/10.1002/ffj.1314 (2004).Article 
CAS 

Google Scholar 
Baser, K. H. C., Özek, G., Özek, T., Duran, A. & Duman, H. Composition of the essential oils of Rhabdosciadium oligocarpum (Post ex Boiss.) Hedge et Lamond and Rhabdosciadium microcalycinum Hand. – Mazz. Flavour Fragr. J. 21(4), 650–655. https://doi.org/10.1002/ffj.1639 (2006).Article 
CAS 

Google Scholar 
Merle, H., Verdeguer, M., Blázquez, M. A. & Boira, H. Chemical composition of the essential oils from Eriocephalus africanus L. var. Africanus populations growing in Spain. Flavour Fragr. J. 22(6), 461–464. https://doi.org/10.1002/ffj.1821 (2007).Article 
CAS 

Google Scholar 
Vichi, S. et al. HS-SPME coupled to GC/MS for quality control of Juniperus communis L. berries used for gin aromatization. Food Chem. 105(4), 1748–1754. https://doi.org/10.1016/j.foodchem.2007.03.026 (2007).Article 
CAS 

Google Scholar 
Hachicha, S. F., Skanji, T., Barrek, S., Ghrabi, Z. G. & Zarrouk, H. Composition of the essential oil of Teucrium ramosissimum Desf. (Lamiaceae) from Tunisia. Flavour Fragr. J. 22(2), 101–104. https://doi.org/10.1002/ffj.1764 (2007).Article 
CAS 

Google Scholar 
Neves, A. et al. Screening of five essential oils for identification of potential inhibitors of IL-1-unduced Nf-kB activation and NO production in human clondrocytes: Characterization of the inhibitory activity of alpha-pinene. Plante Med. 76(03), 303–308. https://doi.org/10.1055/s-0029-1186085 (2010).Article 
CAS 

Google Scholar 
Bendimerad, N. & Bendiab, S. A. T. Composition and antibacterial activity of Pseudocytisus integrifolius (Salisb.) essential oil from Algeria. J. Agric. Food Chem. 53(8), 2947–2952. https://doi.org/10.1021/jf047937u (2005).Article 
CAS 
PubMed 

Google Scholar 
Zaikin, V. G. & Borisov, R. S. Chromatographic-mass spectrometric analysis of Fishcer-Tropsch synthesis products. J. Anal. Chem. 57(6), 544–551 (2002).Article 
CAS 

Google Scholar 
Mastelic, J., Jerkovic, I. & Mesic, M. Volatile constituents from flowers, leaves, bark and wood of Prunus mahaleb L.. Flavour Fragr. J. 21(2), 306–313. https://doi.org/10.1002/ffj.1596 (2006).Article 
CAS 

Google Scholar 
Madruga, M. S., Arruda, S. G. B., Narain, N. & Souza, J. G. Castration and slaughter age effects on panel assessment and aroma compounds of the mestico goat meat. Meat Sci. 56(2), 117–125. https://doi.org/10.1016/S0309-1740(00)00025-5 (2000).Article 
CAS 
PubMed 

Google Scholar 
Choi, H.-S. Headspace analyses of fresh leaves and stems of Angelica gigas Nakai, a Korean medicinal herb. Flavour Fragr. J. 21(4), 604–608. https://doi.org/10.1002/ffj.1602 (2006).Article 
CAS 

Google Scholar 
Condurso, C. et al. The leaf volatile constituents of Isatis tinctoria by solid phase microextraction and gas chromatography/mass spectrometry. Planta Med. 72(10), 924–928. https://doi.org/10.1055/s-2006-946679 (2006).Article 
CAS 
PubMed 

Google Scholar 
Utsunomia, H., Kawata, J., Chanoki, W., Shirakawa, N. & Miyazawa, M. Components of essential oil from woods of Prunus mume Sieb. at Zucc. J. Oleo Sci. 54(11), 609–612. https://doi.org/10.5650/jos.54.609 (2005).Article 

Google Scholar 
Radulovic, N., Blagojevic, P. & Palic, R. Comparative study of the leaf volatiles of Arctostaphylos uva-ursi (L.) Spreng and Vaccinium vitis-idaea L. (Ericaceae). Molecules 15(9), 6168–6185. https://doi.org/10.3390/molecules15096168 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brenna, E., Fuganti, C. & Serra, S. Enantioselective perception of chiral odorants. Tetrahedron: Asymmetry 14, 1–42 (2003).Article 
CAS 

Google Scholar 
Lis-Balcnin, M., Ochocka, R. J., Deans, S. G., Asztemborska, M. & Hart, S. Differences in bioactivity between the enantiomers of α-pinene. J. Essent. Oil Res. 11, 393–397 (1999).Article 

Google Scholar 
Nishida, R., Shelly, T. E., Whittier, T. S. & Kaneshiro, K. Y. α-Copaene, a potential rendezvous cue for the Mediterranean fruit fly, Ceratitis Capitata?. J. Chem Ecol. 26(1), 87–100. https://doi.org/10.1023/A:1005489411397 (2000).Article 
CAS 

Google Scholar 
Dewick, P. M. Medicinal Natural Products. A Biosynthetic Approach 3rd edn. (John Wiley & Sons Ltd, 2009).Book 

Google Scholar 
Van Den Dool, H. & Kratz, P. D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 11, 463–471 (1963).Article 

Google Scholar 
Gilardoni, G., Matute, Y. & Ramírez, J. Chemical and enantioselective analysis of the leaf essential oil from Piper coruscans Kunth (Piperaceae), a costal and Amazonian native species of Ecuador. Plants 9, 791. https://doi.org/10.3390/plants9060791 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
De Saint Laumer, J. Y., Cicchetti, E., Merle, P., Egger, J. & Chaintreau, A. Quantification in gas chromatography: prediction of flame ionization detector response factors from combustion enthalpies and molecular structures. Anal. Chem. 82, 6457–6462 (2010).Article 
PubMed 

Google Scholar 
Tissot, E., Rochat, S., Debonneville, C. & Chaintreau, A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 27, 290–296 (2012).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles