Diaminonaphthalene functionalized LUS-1 as a fluorescence probe for simultaneous detection of Hg2+ and Fe3+ in Vetiver grass and Spinach

Urek, S. K., Francic, N., Turel, M., & Lobnik, A. Sensing heavy metals using mesoporous-based optical chemical sensors. J. Nanomater. 501320. https://doi.org/10.1155/2013/501320 (2013).Cobbina, S. J. et al. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J. hazard. Mater. 294, 109–120. https://doi.org/10.1016/j.jhazmat.2015.03.057 (2015).Article 
CAS 
PubMed 

Google Scholar 
Meghdadi, S., Khodaverdian, N., Amirnasr, A., French, P. J., van Royen, M. E., Wiemer, E. A., & Amirnasr, M. A new carboxamide probe as On-Off fluorescent and colorimetric sensor for Fe3+ and application in detecting intracellular Fe3+ ion in living cells. J. Photochem. Photobiol. A 389, 112193. https://doi.org/10.1016/j.jphotochem.2019.112193 (2020).Fan, J. et al. A polyethylenimine/salicylaldehyde modified cellulose Schiff base for selective and sensitive Fe3+ detection. Carbohydr. Polym. 228, 115379. https://doi.org/10.1016/j.carbpol.2019.115379 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lashgari, N., Badiei, A., & Mohammadi Ziarani, G. A fluorescent sensor for Al (III) and colorimetric sensor for Fe (III) and Fe (II) based on a novel 8-hydroxyquinoline derivative. J. fluoresc. 26, 1885–1894. https://doi.org/10.1007/s10895-016-1883-3 (2016).Wojciak, R. W., Mojs, E. & Stanisławska-Kubiak, M. The occurrence of iron-deficiency anemia in children with type 1 diabetes. J. Investig. Med. 62, 865–867. https://doi.org/10.1097/JIM.0000000000000098 (2014).Article 
CAS 
PubMed 

Google Scholar 
Patterson, A. J., Brown, W. J., Powers, J. R. & Roberts, D. C. Iron deficiency, general health and fatigue: Results from the Australian Longitudinal Study on Women’s Health. Qual. Life Res. 9, 491–497. https://doi.org/10.1023/a:1008978114650 (2000).Article 
CAS 
PubMed 

Google Scholar 
Simcox, J. A. & McClain, D. A. Iron and diabetes risk. Cell Metab. 17, 329–341. https://doi.org/10.1016/j.cmet.2013.02.007 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Swaminathan, S., Fonseca, V. A., Alam, M. G., & Shah, S. V. The role of iron in diabetes and its complications. Diabetes Care 30, 1926–1933. https://doi.org/10.2337/dc06-2625 (2007).Busti, F., Marchi, G., Ugolini, S., Castagna, A. & Girelli, D. Anemia and iron deficiency in cancer patients: Role of iron replacement therapy. Pharm. 11, 94. https://doi.org/10.3390/ph11040094 (2018).Article 
CAS 

Google Scholar 
Chang, V. C., Cotterchio, M. & Khoo, E. Iron intake, body iron status, and risk of breast cancer: A systematic review and meta-analysis. BMC Cancer 19, 1–28. https://doi.org/10.1186/s12885-019-5642-0 (2019).Article 
CAS 

Google Scholar 
Yan, N. & Zhang, J. Iron metabolism, ferroptosis, and the links with Alzheimer’s disease. Front. Neurosci. 13, 1443. https://doi.org/10.3389/fnins.2019.01443 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, J.-L., Fan, Y.-G., Yang, Z.-S., Wang, Z.-Y. & Guo, C. Iron and Alzheimer’s disease: from pathogenesis to therapeutic implications. Front. Neurosci. 12, 632. https://doi.org/10.3389/fnins.2018.00632 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Weinreb, O., Mandel, S., Youdim, M. B. & Amit, T. Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radic. Biol. Med. 62, 52–64. https://doi.org/10.1016/j.freeradbiomed.2013.01.017 (2013).Article 
CAS 
PubMed 

Google Scholar 
Zhu, R. et al. A colorimetric probe for the detection of aluminum ions based on 11-mercaptoundecanoic acid functionalized gold nanoparticles. Anal. Methods 8, 7232–7236. https://doi.org/10.1039/C6AY02194H (2016).Article 
CAS 

Google Scholar 
Gupta, M. & Lee, H. I. A pyrene derived CO2-responsive polymeric probe for the turn-on fluorescent detection of nerve agent mimics with tunable sensitivity. Macromol. 50, 6888–6895. https://doi.org/10.1021/acs.macromol.7b01200 (2017).Article 
ADS 
CAS 

Google Scholar 
Haldar, U. & Lee, H. I. BODIPY-derived multi-channel polymeric chemosensor with pH-tunable sensitivity: Selective colorimetric and fluorimetric detection of Hg2+ and HSO4− in aqueous media. Polym. Chem. 9, 4882–4890. https://doi.org/10.1039/C8PY01232F (2018).Article 
CAS 

Google Scholar 
Zhu, X. et al. A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron (III), iron (II), and copper (II) ions. Anal. Methods 11, 642–647. https://doi.org/10.1039/C8AY02526F (2019).Article 
CAS 

Google Scholar 
Soufeena, P. P. & Aravindakshan, K. K. Antipyrine derived Schiff base: A colurimetric sensor for Fe (III) and “turn-on” fluorescent sensor for Al (III). J. Lumin. 205, 400–405. https://doi.org/10.1016/j.jlumin.2018.09.025 (2019).Article 
CAS 

Google Scholar 
Tang, X. et al. A multifunctional Schiff base as a fluorescence sensor for Fe3+ and Zn2+ ions, and a colorimetric sensor for Cu2+ and applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 721–726. https://doi.org/10.1016/j.saa.2016.10.028 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Tchounwou, P. B., Ayensu, W. K., Ninashvili, N. & Sutton, D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 18, 149–175. https://doi.org/10.1002/tox.10116 (2003).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Yang, L. et al. Toxicity of mercury: Molecular evidence. Chemosphere 245, 125586. https://doi.org/10.1016/j.chemosphere.2019.125586 (2020).Article 
CAS 
PubMed 

Google Scholar 
Shahid, M. et al. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Sci. Total Environ. 711, 134749. https://doi.org/10.1016/j.scitotenv.2019.134749 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Raj, D. & Maiti, S. K. Sources, toxicity, and remediation of mercury: An essence review. Environ. Monit. Assess. 191, 1–22. https://doi.org/10.1007/s10661-019-7743-2 (2019).Article 
CAS 

Google Scholar 
Ye, H. et al. A new probe for fluorescent recognition of Hg2+ in living cells and colorimetric detection of Cu2+ in aqueous solution. Sens. Actuators B Chem. 182, 273–279. https://doi.org/10.1016/j.snb.2013.03.015 (2013).Article 
ADS 
CAS 

Google Scholar 
Zhang, C. et al. A simple Schiff base fluorescence probe for highly sensitive and selective detection of Hg2+ and Cu2+. Talanta 154, 278–283. https://doi.org/10.1016/j.talanta.2016.03.067 (2016).Article 
CAS 
PubMed 

Google Scholar 
Iraqui, S. et al. Bi-functional aqueous starch capped CdS quantum dots synthesis and their application as sensor of heavy metal-ions as well as photocatalytic dye degradation. J. Mol. Liquids 388, 122794. https://doi.org/10.1016/j.molliq.2023.122794 (2023).Article 
CAS 

Google Scholar 
Uddin, I. Onsite visual detection of heavy metal contaminants using impregnated strip, J. Photochem. Photobiol. A 421, 113512. https://doi.org/10.1016/j.jphotochem.2021.113512 (2021).Wang, J. Q. et al. Architecture of a hybrid mesoporous chemosensor for Fe3+ by covalent coupling bis-schiff base PMBA onto the CPTES functionalized SBA-15. J. Phys. Chem. C 112, 5014–5022. https://doi.org/10.1021/jp7099948 (2008).Article 
CAS 

Google Scholar 
Afshani, J., Badiei, A., Lashgari, N. & Ziarani, G. M. A simple nanoporous silica-based dual mode optical sensor for detection of multiple analytes (Fe3+, Al3+ and CN−) in water mimicking XOR logic gate. RSC Adv. 6, 5957–5964. https://doi.org/10.1039/C5RA23136A (2016).Article 
ADS 
CAS 

Google Scholar 
Ghulam Fahmi, M. R., Fajar, A. T. N., Roslan, N., Yuliati, L., Fadlan, A., Santoso, M., & Lintang, H. O. Fluorescence study of 5-nitroisatin Schiff base immobilized on SBA-15 for sensing Fe3+, Open Chem. 17, 438–447. https://doi.org/10.1515/chem-2019-0053 (2019).Liu, J., & Qian, Y. A novel pyridylvinyl naphthalimide-rhodamine dye: Synthesis, naked-eye visible and ratiometric chemodosimeter for Hg2+ and Fe3+. J. Luminesc. 187, 33–39 (2017).Liu, J. & Qian, Y. A novel naphthalimide-rhodamine dye: intramolecular fluorescence resonance energy transfer and ratiometric chemodosimeter for Hg2+ and Fe3+. Dyes Pigm. 136, 782–790. https://doi.org/10.1016/j.dyepig.2016.09.041 (2017).Article 
CAS 

Google Scholar 
Patidar, R., Rebary, B., Bhadu, G. & Paul, P. Fluorescent carbon nano particles as label-free recognizer of Hg2+ and Fe3+ through effective fluorescence quenching in aqueous media. J. Luminesc. 173, 243–249. https://doi.org/10.1016/j.jlumin.2015.12.051 (2016).Article 
ADS 
CAS 

Google Scholar 
Yu, J. et al. Green preparation of carbon dots by Jinhuabergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sens. Actuators B Chem. 214, 29–35. https://doi.org/10.1016/j.snb.2015.03.006 (2015).Article 
ADS 
CAS 

Google Scholar 
Geng, T. et al. Fluorescent polyamide-based rhodamine hydrazide moieties with oxethyl as spacer for detection of Cr3+, Fe3+, and Hg2+ ions in water. J. Fluoresc. 26, 977–985. https://doi.org/10.1007/s10895-016-1785-4 (2016).Article 
CAS 
PubMed 

Google Scholar 
Rahimifard, M., Ziarani, G. M. & Badiei, A. Sulfonic acid-functionalized LUS-1: an efficient catalyst for one-pot synthesis of 2, 4-diamino pyrimidine-5-carbonitrile derivatives. Quím. Nova 39, 962–967. https://doi.org/10.5935/0100-4042.20160111 (2016).Article 
CAS 

Google Scholar 
Kheilkordi, Z., Ziarani, G. M., & Badiei, A. Fe3O4@ SiO2@(BuSO3H)3 synthesis as a new efficient nanocatalyst and its application in the synthesis of heterocyclic [3.3. 3] propellane derivatives. Polyhedron 178, 114343. https://doi.org/10.1016/j.poly.2019.114343 (2020).Mohajer, F., Ziarani, G. M. & Badiei, A. New advances on Au–magnetic organic hybrid core–shells in MRI, CT imaging, and drug delivery. RSC Adv. 11, 6517–6525. https://doi.org/10.1039/D1RA00415H (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mohammadi Ziarani, G., Saidian, F., Gholamzadeh, P., Badiei, A., Ghasemi, J. B., Aghaee, E., & Abolhasani Soorki, A. SBA-Pr-SO3 H-catalyzed synthesis of bispyrazole compounds as anti-bacterial agents and inhibitors of phosphorylated RET tyrosine kinase. J. Iran. Chem. Soc. 16, 1401–1409. https://doi.org/10.1007/s13738-019-01618-1 (2019).Ziarani, G. M., Mofatehnia, P., Mohajer, F. & Badiei, A. Rational design of yolk–shell nanostructures for drug delivery. RSC Adv. 10, 30094–30109. https://doi.org/10.1039/D0RA03611K (2020).Article 

Google Scholar 
Ziarani, G. M., Malmir, M., Lashgari, N. & Badiei, A. The role of hollow magnetic nanoparticles in drug delivery. RSC Adv. 9, 25094–25106. https://doi.org/10.1039/C9RA01589B (2019).Article 
ADS 

Google Scholar 
Ma, Q. et al. A highly sensitive and selective fluorescent probe for nitroxyl based on a naphthalene derivative. Anal. Methods 11, 832–843. https://doi.org/10.1039/C8AY02030B (2019).Article 
CAS 

Google Scholar 
Bhatt, R., Mishra, A. & Bajpai, A. K. Role of diaminonaphthalene based polymers as sensors in detection of biomolecules: A review. Res. Mater. 9, 100174. https://doi.org/10.1016/j.rinma.2021.100174 (2021).Article 
CAS 

Google Scholar 
Sahana, A. et al. A naphthalene-based Al3+ selective fluorescent sensor for living cell imaging. Org. Biomol. Chem. 9, 5523–5529. https://doi.org/10.1039/C1OB05479A (2011).Article 
CAS 
PubMed 

Google Scholar 
Azadegan, F., Esmaeili Bidhendi, M., Badiei, A., Lu, S., Sotoudehnia Korrani, Z., & Rezania, S. Removal of mercury ions from aqueous by functionalized LUS-1 with Bis [3-(triethoxysilyl) propyl] tetrasulfide as an effective nanocomposite using response surface methodology (RSM). Environ. Sci. Pollut. Res. 30, 71649–71664. https://doi.org/10.1007/s11356-021-15021-y(2023).Kruk, M., Jaroniec, M., Ko, C. H., & Ryoo, R. Characterization of the porous structure of SBA-15. Chem. Mater. 12, 1961–1968. https://doi.org/10.1021/cm000164e (2000).Hemmati Tirabadi, F., Hajiaghababaei, L., Tehrani, R. M., Badiei, A., & Mollahosseini, A. Trithiocyanuric acid-functionalized nanoporous silica: synthesis and application as an Ag+ selective optical probe. Chem. Pap. 76, 6629–6637. https://doi.org/10.1007/s11696-022-02358-y(2022).Lashgari, N., Badiei, A. & Ziarani, G. M. A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2O72−) in water. J. Phys. Chem. Solids 103, 238–248. https://doi.org/10.1016/j.jpcs.2016.11.021 (2017).Article 
ADS 
CAS 

Google Scholar 
Naderi, Z., Azizian, J., Moniri, E. & Farhadyar, N. Synthesis and characterization of carboxymethyl cellulose/β-cyclodextrin/chitosan hydrogels and investigating the effect of magnetic nanoparticles (Fe3O4) on a novel carrier for a controlled release of methotrexate as drug delivery. J. Inorg. Organomet. Polym. Mater. 30, 1339–1351. https://doi.org/10.1007/s10904-019-01301-1 (2020).Article 
CAS 

Google Scholar 
Ghaemi, M., Hajiaghababaei, L., Tehrani, R. M. A., Najafpour, J. & Shahvelayati, A. S. Theoretical and experimental approaches to the use of benzoyl carbamothioyl alanine as a new ionophore for development of various mercury selective electrodes. J. Mol. Liq. 370, 121043. https://doi.org/10.1016/j.molliq.2022.121043 (2023).Article 
CAS 

Google Scholar 
Mohammadi Ziarani, G., Akhgar, M., Mohajer, F. and Badiei, A. SBA-Pr-IS-MN synthesis and its application as Ag+ optical sensor in aqueous media. Res. Chem. Intermediat. 47, 2845–2855. https://ssrn.com/abstract=3984571 (2021).Yadavi, M., Badiei, A., Ziarani, G. M. & Abbasi, A. Synthesis of novel fluorene-functionalised nanoporous silica and its luminescence behaviour in acidic media. Chem. Pap. 67, 751–758. https://doi.org/10.2478/s11696-013-0357-1 (2013).Article 
CAS 

Google Scholar 
Jaroniec, C., Kruk, M., Jaroniec, M. & Sayari, A. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes. J. Phys. Chem. B 102, 5503–5510. https://doi.org/10.1021/jp981304z (1998).Article 
CAS 

Google Scholar 
Goldooz, H., Badiei, A., Shiravand, G., Ghasemi, J. B., & Mohammadi Ziarani, G. A highly selective Ag+ sensor based on 8-hydroxyquinoline functionalized graphene oxide-silica nanosheet and its logic gate behaviour. J. Mater. Sci.: Mater. Electron. 30, 17693–17705. https://doi.org/10.1007/s10854-019-02119-w (2019).Ömeroğlu, I., & Şanko, V. A. “Turn-off” fluorescence sensor for Fe2+, Fe3+, and Cu2+ ions based on novel pyrene-functionalized chitosan. Turk. J. Anal. Chem. 5, 50–60. https://doi.org/10.51435/turkjac.1302873 (2023).Azimi, E. B. et al. Boron-doped graphitic carbon nitride as a novel fluorescent probe for mercury (II) and iron (III): A circuit logic gate mimic. New J. Chem. 43, 12087–12093. https://doi.org/10.1039/C9NJ03127H (2019).Article 

Google Scholar 
Métivier, R., Leray, I., Lebeau, B. & Valeur, B. A mesoporous silica functionalized by a covalently bound calixarene-based fluoroionophore for selective optical sensing of mercury (II) in water. J. Mater. Chem. 15, 2965–2973. https://doi.org/10.1039/B501897H (2005).Article 

Google Scholar 
Zou, Q., Zou, L. & Tian, H. Detection and adsorption of Hg2+ by new mesoporous silica and membrane material grafted with a chemodosimeter. J. Mater. Chem. 21, 14441–14447. https://doi.org/10.1039/C1JM11704A (2011).Article 
CAS 

Google Scholar 
Fahmi, M. R. G. et al. Fluorescence study of 5-nitroisatin Schiff base immobilized on SBA-15 for sensing Fe3+. Open Chem. 17, 438–447. https://doi.org/10.1515/chem-2019-0053 (2019).Article 
CAS 

Google Scholar 
Huang, J., Liu, H. B. & Wang, J. Functionalized mesoporous silica as a fluorescence sensor for selective detection of Hg2+ in aqueous medium. Spectrochim. Acta A Mol. Biomol. Spectrosc. 246, 118974. https://doi.org/10.1016/j.saa.2020.118974 (2021).Article 
CAS 
PubMed 

Google Scholar 
Shiravand, G., Badiei, A. & Ziarani, G. M. Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sens. Actuators B Chem. 242, 244–252. https://doi.org/10.1016/j.snb.2016.11.038 (2017).Article 
ADS 
CAS 

Google Scholar 

Hot Topics

Related Articles