Isolation and characterization of a two-coordinate phosphinidene oxide

Gowenlock, B. G. & Richter-Addo, G. B. Preparations of C-nitroso compounds. Chem. Rev. 104, 3315–3340 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bianchi, P. & Monbaliu, J. C. M. Three decades of unveiling the complex chemistry of C-nitroso species with computational chemistry. Org. Chem. Front. 9, 223–226 (2022).Article 
CAS 

Google Scholar 
Chu, X. X. et al. Q methoxyphosphinidene and isomeric methylphosphinidene oxide. J. Am. Chem. Soc. 140, 13604–13608 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhao, X. F. et al. Phosphorus analogues of methyl nitrite and nitromethane: CH3OPO and CH3PO2. Angew. Chem. Int. Ed. 58, 12164–12169 (2019).Article 
CAS 

Google Scholar 
Mardyukov, A., Keul, F. & Schreiner, P. R. Isolation and characterization of the free phenylphosphinidene chalcogenides C6H5P=O and C6H5P=S, the phosphorous analogues of nitrosobenzene and thionitrosobenzene. Angew. Chem. Int. Ed. 59, 12445–12449 (2020).Article 
CAS 

Google Scholar 
Chu, X. et al. The triplet hydroxyl radical complex of phosphorus monoxide. Angew. Chem. Int. Ed. 59, 21949–21953 (2020).Article 
CAS 

Google Scholar 
Fast, D. E. et al. Bis(mesitoyl)phosphinic acid: photo-triggered release of metaphosphorous acid in solution. Chem. Commun. 52, 9917–9920 (2016).Article 
CAS 

Google Scholar 
Liang, S. et al. Elucidating the thermal decomposition of dimethyl methylphosphonate by vacuum ultraviolet (VUV) photoionization: pathways to the PO radical, a key species in flame-retardant mechanisms. Chem. Eur. J. 21, 1073–1080 (2015).Article 
CAS 
PubMed 

Google Scholar 
Qian, W. Y. et al. Hydrogen-atom tunneling in metaphosphorous acid. Chem. Eur. J. 26, 8205–8209 (2020).Article 
CAS 
PubMed 

Google Scholar 
Johnson, M. J. A., Odom, A. L. & Cummins, C. C. Phosphorus monoxide as a terminal ligand. Chem. Commun. 1523, 1524 (1997).
Google Scholar 
Stille, J. K., Eichelberger, J. L., Higgins, J. & Freeburger, M. E. Phenylphosphinidene oxide. Thermal decomposition of 2,3-benzo-l,4,5,6,7-pentaphenyl-7-phosphabicyclo-[2.2.1]hept-5-ene oxide. J. Am. Chem. Soc. 94, 4761–4763 (1972).Article 
CAS 

Google Scholar 
Yoshifuji, M., Nakayama, S., Okazaki, R. & Inamoto, N. Phosphinidenes and related intermediates. Part 1. Reactions of phosphinoylidenes (R-P=O) and phosphinothioylidenes (R-P=S) with diethyl disulphide and benzl. J. Chem. Soc.Perkin Trans. 1973, 2065–2068 (1973).Article 

Google Scholar 
Shigenobu, N., Masaaki, Y., Renji, O. & Naoki, I. Phosphinidenes and related intermediates. III. Reactions of phosphinylidenes and phosphinothioylidenes with conjugated dienes. Bull. Chem. Soc. Jpn 48, 546–548 (1975).Article 

Google Scholar 
Niecke, E., Zorn, H., Krebs, B. & Henkel, G. (R2NPO)3: a novel heterocycle with λ3-phosphorus by trimerization of an aminooxophosphane. Angew. Chem. Int. Ed. Engl. 19, 709–710 (1980).Article 

Google Scholar 
Cowley, A. H., Gabbaï, F. P., Corbelin, S. & Decken, A. Synthesis and thermolysis of a phosphorus(III) oxalate. Evidence for the generation of an arylphosphinidene oxide. Inorg. Chem. 34, 5931–5932 (1995).Article 
CAS 

Google Scholar 
Gaspar, P. P. et al. 2,6-Dimethoxyphenylphosphirane oxide and sulfide and their thermolysis to phosphinidene chalcogenides—kinetic and mechanistic studies. Tetrahedron 56, 105–119 (2000).Article 
CAS 

Google Scholar 
Quin, L. D., Jankowski, S., Sommese, A. G., Lahti, P. M. & Chesnut, D. B. The first direct observation of a phosphenite. J. Am. Chem. Soc. 114, 11009–11010 (1992).Article 
CAS 

Google Scholar 
Niecke, E., Engelmann, M., Zorn, H., Krebs, B. & Henkel, G. Complex-stabilization of an aminooxophosphane (phosphinidene oxide). Angew. Chem. Int. Ed. Engl. 19, 710–712 (1980).Article 

Google Scholar 
Alonso, M., García, M. E., Ruiz, M. A., Hamidov, H. & Jeffery, J. C. Chemistry of the phosphinidene oxide ligand. J. Am. Chem. Soc. 126, 13610–13611 (2004).Article 
CAS 
PubMed 

Google Scholar 
Alonso, M. et al. Oxidation reactions of the phosphinidene oxide ligand. J. Am. Chem. Soc. 127, 15012–15013 (2005).Article 
CAS 
PubMed 

Google Scholar 
Alonso, M., Alvarez, M. A., García, M. E., García-Vivó, D. & Ruiz, M. A. Chemistry of the oxophosphinidene ligand. 1. Electronic structure of the anionic complexes [MCp{P(O)R*}(CO)2]− (M = Mo, W; R* = 2,4,6-C6H2tBu3) and their reactions with H+ and C-based electrophiles. Inorg. Chem. 49, 8962–8976 (2010).Article 
CAS 
PubMed 

Google Scholar 
Alonso, M. et al. Chemistry of the oxophosphinidene ligand. 2. Reactivity of the anionic complexes [MCp{P(O)R*}(CO)2]− (M = Mo, W; R* = 2,4,6-C6H2tBu3) toward electrophiles based on elements different from carbon. Inorg. Chem. 49, 11595–11605 (2010).Article 
CAS 
PubMed 

Google Scholar 
Liu, L. L. & Stephan, D. W. An imine–gallium Lewis pair stabilized oxophosphinidene via an unexpected phosphirene rearrangement. Chem. Commun. 54, 1041–1044 (2018).Article 
CAS 

Google Scholar 
Dhara, D. et al. Synthesis and reactivity of NHC-coordinated phosphinidene oxide. Chem. Commun. 57, 9546–9549 (2021).Article 
CAS 

Google Scholar 
Baradzenka, A. G., Vyboishchikov, S. F., Pilkington, M. & Nikonov, G. I. Base-stabilized phosphinidene oxide, imide and sulfide. Chem. Eur. J. 29, e202301842 (2023).Article 
CAS 
PubMed 

Google Scholar 
Goto, K., Yamamoto, G., Tan, B. & Okazaki, R. A novel dendrimer-type m-terphenyl substituent for the kinetic stabilization of highly reactive species. Tetrahedron Lett. 42, 4875–4877 (2001).Article 
CAS 

Google Scholar 
Shimada, K. et al. Isolation of a Se-nitrososelenol: a new class of reactive nitrogen species relevant to protein Se-nitrosation. J. Am. Chem. Soc. 126, 13238–13239 (2004).Article 
CAS 
PubMed 

Google Scholar 
Masuda, R., Kimura, R., Karasaki, T., Sase, S. & Goto, K. Modeling the catalytic cycle of glutathione peroxidase by nuclear magnetic resonance spectroscopic analysis of selenocysteine selenenic acids. J. Am. Chem. Soc. 143, 6345–6350 (2021).Article 
CAS 
PubMed 

Google Scholar 
Masuda, R., Kuwano, S. & Goto, K. Modeling selenoprotein Se-nitrosation: synthesis of a Se-nitrososelenocysteine with persistent stability. J. Am. Chem. Soc. 145, 14184–14189 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goicoechea, J. M. & Grützmacher, H. The chemistry of the 2-phosphaethynolate anion. Angew. Chem. Int. Ed. 57, 16968–16994 (2018).Article 
CAS 

Google Scholar 
Hinz, A. & Goicoechea, J. M. The 2-arsaethynolate anion: synthesis and reactivity towards heteroallenes. Angew. Chem. Int. Ed. 55, 8536–8541 (2016).Article 
CAS 

Google Scholar 
Tambornino, F., Hinz, A., Köppe, R. & Goicoechea, J. M. A general synthesis of phosphorus- and arsenic-containing analogues of the thio- and seleno-cyanate anions. Angew. Chem. Int. Ed. 57, 8230–8234 (2018).Article 
CAS 

Google Scholar 
Ergöçmen, D. & Goicoechea, J. M. Synthesis, structure and reactivity of a cyapho-cyanamide salt. Angew. Chem. Int. Ed. 60, 25286–25289 (2021).Article 

Google Scholar 
Hu, C. & Goicoechea, J. M. Synthesis, structure and reactivity of a cyapho(dicyano)methanide salt. Angew. Chem. Int. Ed. 61, e202208921 (2022).Article 
CAS 

Google Scholar 
Hinz, A., Labbow, R., Rennick, C., Schulz, A. & Goicoechea, J. M. HPCO—a phosphorus-containing analogue of isocyanic acid. Angew. Chem. Int. Ed. 56, 3911–3915 (2017).Article 
CAS 

Google Scholar 
Niecke, E., Nieger, M. & Reichert, F. Arylmino(halogeno)phosphanes XP=NC6H2tBu3 (X = Cl, Br, I) and the iminophosphenium tetrachloroaluminate [P≡NC6H2tBu3]⊕[AlCl4]⊖: the first stable compound with a PN triple bond. Angew. Chem. Int. Ed. Engl. 27, 1715–1716 (1988).Morell, C., Grand, A. & Toro-Labbé, A. New dual descriptor for chemical reactivity. J. Phys. Chem. A 109, 205–212 (2005).Article 
CAS 
PubMed 

Google Scholar 
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).Article 
PubMed 

Google Scholar 
Lu, T. & Chen, Q. in Conceptual Density Functional Theory (ed. Liu, S.-B.) 631–647 (Wiley, 2022).Pyykkö, P. & Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186–197 (2009).Article 
PubMed 

Google Scholar 
Rayner-Canham, G. Isodiagonality in the periodic table. Found. Chem. 13, 121–129 (2011).Article 
CAS 

Google Scholar 
Chernega, A. N., Antipin, M. Y., Struchkov, Y. T., Ruban, A. V. & Romanenko, V. D. Structure of organophosphorus compounds. Part XLII. The molecular structure of the 2,6-di-tert-butyl-4-methylphenyl ester of N-[2,4,6-tri(tert-butyl)-phenyl]phosphenimidous acid. J. Struct. Chem. 30, 957–962 (1989).Article 

Google Scholar 
Chernega, A. I., Antipin, M. Y., Struchkov, Y. T., Ruban, A. V. & Romanenko, V. D. The structure of organophosphorus compounds. Part XLIV. The molecular structure of the 2-methylphenyl ester of N-[2,4,6-tri(tert-butyl)phenyl] imidophosphenous acid. J. Struct. Chem. 31, 301–306 (1990).Article 

Google Scholar 
Niecke, E., Detsch, R., Nieger, M., Reichert, F. & Schoeller, W. From covalent to ionic bonding—spontaneous bond-dissociation in oxy-substituted iminophosphanes. Bull. Soc. Chim. Fr. 130, 25–31 (1993).CAS 

Google Scholar 
Pötschke, N., Barion, D., Nieger, M. & Niecke, E. Chirale iminophosphane durch reaktion von lithiumalkoholaten mit chlor-(2,4,6-tri-tert-butylphenylimino)phosphan. Tetrahedron 51, 8993–8996 (1995).Article 

Google Scholar 
Chernega, A. N. & Romanenko, V. D. Molecular structure of the (−)menthyl ester of N-(2,4,6-tri-tert-butylphenyl) imidophosphinous acid. J. Struct. Chem. 37, 364–366 (1996).Article 

Google Scholar 
Kuprat, M. et al. Silver tetrakis(hexafluoroisopropoxy)aluminate as hexafluoroisopropyl transfer reagent for the chlorine/hexafluoroisopropyl exchange in imino phosphanes. J. Organomet. Chem. 695, 1006–1011 (2010).Article 
CAS 

Google Scholar 
Eckhardt, A. K., Riu, M.-L. Y., Müller, P. & Cummins, C. C. Frustrated Lewis pair stabilized phosphoryl nitride (NPO), a monophosphorus analogue of nitrous oxide (N2O). J. Am. Chem. Soc. 143, 21252–21257 (2021).Article 
CAS 
PubMed 

Google Scholar 
Liu, Z. et al. Carbodiphosphorane-stabilized parent dioxophosphorane: a valuable synthetic HO2P source. J. Am. Chem. Soc. 144, 7357–7365 (2022).Article 
CAS 
PubMed 

Google Scholar 
Greenwood, N. N. & Earnshaw, A. Chemistry of the Elements 2nd edn (Elsevier Butterworth-Heineman, 2005).Kostina, V., Feshchenko, N. & Kirsanov, A. Iodokis’ Fosfora, POI3. Zh. Obs. Khim. 43, 209 (1973).CAS 

Google Scholar 
Gonsior, M., Müller, L. & Krossing, I. Lewis acid stabilized OPI3: implications for the nature of free OPI3. Chem. Eur. J. 12, 5815–5822 (2006).Article 
CAS 
PubMed 

Google Scholar 
Yandulov, D. V. & Schrock, R. R. Reduction of dinitrogen to ammonia at a well-protected reaction site in a molybdenum triamidoamine complex. J. Am. Chem. Soc. 124, 6252–6253 (2002).Article 
CAS 
PubMed 

Google Scholar 
Bailey, P. J. et al. The first structural characterisation of a group 2 metal alkylperoxide complex: comments on the cleavage of dioxygen by magnesium alkyl complexes. Chem. Eur. J. 9, 4820–4828 (2003).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles