PRC2-AgeIndex as a universal biomarker of aging and rejuvenation

Moqri, M. et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell. 186, 3758–3775 (2023).Moqri, M. et al. Validation of biomarkers of aging. Nat. Med. 30, 360–372 (2024).Jylhava, J., Pedersen, N. L. & Hagg, S. Biological age predictors. EBioMedicine 21, 29–36 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).Article 
PubMed 

Google Scholar 
Dabrowski, J. K. et al. Probabilistic inference of epigenetic age acceleration from cellular dynamics. Preprint at bioRxiv https://doi.org/10.1101/2023.03.01.530570 (2023).Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).Article 
PubMed 

Google Scholar 
Sziraki, A., Tyshkovskiy, A. & Gladyshev, V. N. Global remodeling of the mouse DNA methylome during aging and in response to calorie restriction. Aging Cell 17, e12738 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Johansson, A., Enroth, S. & Gyllensten, U. Continuous aging of the human DNA methylome throughout the human lifespan. PLoS ONE 8, e67378 (2013).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, W. et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat. Genet. 50, 591–602 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Long, H. K. et al. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. eLife 2, e00348 (2013).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).Article 
ADS 
PubMed 

Google Scholar 
Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Jeong, M. et al. Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat. Genet. 46, 17–23 (2014).Article 
PubMed 

Google Scholar 
Zhang, X. et al. Large DNA methylation nadirs anchor chromatin loops maintaining hematopoietic stem cell identity. Mol. Cell 78, 506–521.e506 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Ginno, P. A., Lott, P. L., Christensen, H. C., Korf, I. & Chedin, F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Williams, K., Christensen, J. & Helin, K. DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep. 13, 28–35 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Bartke, T. et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Hagarman, J. A., Motley, M. P., Kristjansdottir, K. & Soloway, P. D. Coordinate regulation of DNA methylation and H3K27me3 in mouse embryonic stem cells. PLoS ONE 8, e53880 (2013).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Lindroth, A. M. et al. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLoS Genet. 4, e1000145 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Wu, H. et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448 (2010).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet. 39, 237–242 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 39, 232–236 (2007).Article 
PubMed 

Google Scholar 
Slieker, R. C., Relton, C. L., Gaunt, T. R., Slagboom, P. E. & Heijmans, B. T. Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenet. Chromatin 11, 25 (2018).Article 

Google Scholar 
Teschendorff, A. E. et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20, 440–446 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157–158 (2007).Article 
PubMed 

Google Scholar 
Zheng, S. C., Widschwendter, M. & Teschendorff, A. E. Epigenetic drift, epigenetic clocks and cancer risk. Epigenomics 8, 705–719 (2016).Article 
PubMed 

Google Scholar 
Zhou, W. et al. DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. Cell Genom. https://doi.org/10.1016/j.xgen.2022.100144 (2022).Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).Article 
PubMed 

Google Scholar 
Dozmorov, M. G. Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes. Epigenetics 10, 484–495 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Lu, R. J. et al. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex and age-related functional regulation. Nat. Aging 1, 715–733 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Luo, C., Hajkova, P. & Ecker, J. R. Dynamic DNA methylation: In the right place at the right time. Science 361, 1336–1340 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Minteer, C. et al. Tick tock, tick tock: mouse culture and tissue aging captured by an epigenetic clock. Aging Cell 21, e13553 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Mozhui, K. & Pandey, A. K. Conserved effect of aging on DNA methylation and association with EZH2 polycomb protein in mice and humans. Mech. Ageing Dev. 162, 27–37 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Rozenblit, M. et al. Evidence of accelerated epigenetic aging of breast tissues in patients with breast cancer is driven by CpGs associated with polycomb-related genes. Clin. Epigenet. 14, 30 (2022).Article 

Google Scholar 
Ying, K. et al. Biolearn, an open-source library for biomarkers of aging. Preprint at bioRxiv https://doi.org/10.1101/2023.12.02.569722 (2023).Ying, K. et al. ClockBase: a comprehensive platform for biological age profiling in human and mouse. Preprint at bioRxiv https://doi.org/10.1101/2023.02.28.530532 (2023).Chen, C. C., Lim, C. Y., Lee, P. J., Hsu, A. L. & Ching, T. T. S-adenosyl methionine synthetase SAMS-5 mediates dietary restriction-induced longevity in Caenorhabditis elegans. PLoS ONE 15, e0241455 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Hahn, O. et al. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol. 18, 56 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960.e956 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Browder, K. C. et al. In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat. Aging 2, 243–253 (2022).Article 
PubMed 

Google Scholar 
Chondronasiou, D. et al. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 21, e13578 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Cipriano, A. et al. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. Nat. Aging https://doi.org/10.1038/s43587-023-00539-2 (2023).Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e1712 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Sarkar, T. J. et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. 11, 1545 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences. Nat. Commun. 13, 783 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Ludwin, S. K. Proliferation of mature oligodendrocytes after trauma to the central nervous system. Nature 308, 274–275 (1984).Article 
ADS 
PubMed 

Google Scholar 
Horvath, S. et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 13, R97 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Seale, K., Horvath, S., Teschendorff, A., Eynon, N. & Voisin, S. Making sense of the ageing methylome. Nat. Rev. Genet. 23, 585–605 (2022).Article 
PubMed 

Google Scholar 
Simpson, D. J. et al. Region-based epigenetic clock design improves RRBS-based age prediction. Aging Cell 22, e13866 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Youn, A. & Wang, S. The MiAge calculator: a DNA methylation-based mitotic age calculator of human tissue types. Epigenetics 13, 192–206 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Koldobskiy, M. A., Camacho, O., Reddy, P., Belmonte, J. C. I. & Feinberg, A. P. Convergence of aging- and rejuvenation-related epigenetic alterations on PRC2 targets. Preprint at bioRxiv https://doi.org/10.1101/2023.06.08.544045 (2023).Levine, M. E., Higgins-Chen, A., Thrush, K., Minteer, C. & Niimi, P. Clock Work: deconstructing the epigenetic clock signals in aging, disease, and reprogramming. Preprint at bioRxiv https://doi.org/10.1101/2022.02.13.480245 (2022).Liu, Z. et al. Underlying features of epigenetic aging clocks in vivo and in vitro. Aging Cell 19, e13229 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in DNA. Nature 287, 560–561 (1980).Article 
ADS 
PubMed 

Google Scholar 
Jung, M. & Pfeifer, G. P. Aging and DNA methylation. BMC Biol. 13, 7 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, Y. et al. Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys. Genome Biol. 19, 18 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Nishiyama, A. & Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 37, 1012–1027 (2021).Article 
PubMed 

Google Scholar 
Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Teschendorff, A. E. A comparison of epigenetic mitotic-like clocks for cancer risk prediction. Genome Med. 12, 56 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Gu, T. et al. The disordered N-terminal domain of DNMT3A recognizes H2AK119ub and is required for postnatal development. Nat. Genet. 54, 625–636 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Bianchi, A. et al. Dysfunctional polycomb transcriptional repression contributes to lamin A/C-dependent muscular dystrophy. J. Clin. Invest. 130, 2408–2421 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Ermolaeva, M., Neri, F., Ori, A. & Rudolph, K. L. Cellular and epigenetic drivers of stem cell ageing. Nat. Rev. Mol. Cell Biol. 19, 594–610 (2018).Article 
PubMed 

Google Scholar 
Martin, N., Beach, D. & Gil, J. Ageing as developmental decay: insights from p16(INK4a). Trends Mol. Med. 20, 667–674 (2014).Article 
PubMed 

Google Scholar 
Alecki, C. et al. RNA-DNA strand exchange by the Drosophila Polycomb complex PRC2. Nat. Commun. 11, 1781 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Skourti-Stathaki, K. et al. R-loops enhance polycomb repression at a subset of developmental regulator genes. Mol. Cell 73, 930–945.e934 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
de Sena Brandine, G. & Smith, A. D. Fast and memory-efficient mapping of short bisulfite sequencing reads using a two-letter alphabet. NAR Genom. Bioinform. 3, lqab115 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Song, Q. et al. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS ONE 8, e81148 (2013).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Trapp, A., Kerepesi, C. & Gladyshev, V. N. Profiling epigenetic age in single cells. Nat. Aging 1, 1189–1201 (2021).Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles