Magnetic yolk-shell structured periodic mesoporous organosilica supported palladium as a powerful and highly recoverable nanocatalyst for the reduction of nitrobenzenes

Zhao, Y. & Jiang, L. Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 21, 3621–3638 (2009).Article 
CAS 

Google Scholar 
Lou, X. W. D., Archer, L. A. & Yang, Z. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 20, 3987–4019 (2008).Article 
CAS 

Google Scholar 
Liu, J., Qiao, S. Z., Hu, Q. H. & Lu, G. Q. Magnetic nanocomposites with mesoporous structures: Synthesis and applications. Small 7, 425–443 (2011).Article 
CAS 
PubMed 

Google Scholar 
An, K. & Hyeon, T. Synthesis and biomedical applications of hollow nanostructures. Nano Today 4, 359–373 (2009).Article 
CAS 

Google Scholar 
Liu, J. et al. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 47, 12578–12591 (2011).Article 
CAS 

Google Scholar 
Zou, H. et al. An organosilane-directed growth-induced etching strategy for preparing hollow/yolk–shell mesoporous organosilica nanospheres with perpendicular mesochannels and amphiphilic frameworks. J. Mater. Chem. A 2, 12403–12412 (2014).Article 
CAS 

Google Scholar 
Mirbagheri, R., Elhamifar, D. & Shaker, M. Yolk–shell structured magnetic mesoporous silica: A novel and highly efficient adsorbent for removal of methylene blue. Sci. Rep. 11, 23259. https://doi.org/10.1038/s41598-021-02699-w (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Neysi, M. & Elhamifar, D. Yolk-shell structured magnetic mesoporous organosilica supported ionic liquid/Cu complex: An efficient nanocatalyst for the green synthesis of pyranopyrazoles. Front. Chem. 11, 125 (2023).Article 

Google Scholar 
Peng, H. et al. Multifunctional yolk-shell structured magnetic mesoporous polydopamine/carbon microspheres for photothermal therapy and heterogenous catalysis. ACS Appl. Mater. Interfaces 14, 23888–23895 (2022).Article 
CAS 

Google Scholar 
Liu, J., Bai, S., Zhong, H., Li, C. & Yang, Q. Tunable assembly of organosilica hollow nanospheres. J. Phys. Chem. C 114, 953–961 (2009).Article 

Google Scholar 
Liu, J. et al. Organic−inorganic hybrid hollow nanospheres with microwindows on the shell. Chem. Mater. 20, 4268–4275 (2008).Article 
CAS 

Google Scholar 
Wei, Y. et al. A versatile in situ etching-growth strategy for synthesis of yolk–shell structured periodic mesoporous organosilica nanocomposites. RSC Adv. 6, 51470–51479 (2016).Article 
ADS 
CAS 

Google Scholar 
Song, J.-C., Xue, F.-F., Zhang, X.-X., Lu, Z.-Y. & Sun, Z.-Y. Synthesis of yolk–shell mesoporous silica nanoparticles via a facile one-pot approach. Chem. Commun. 53, 3761–3764 (2017).Article 
CAS 

Google Scholar 
Liu, B. & Zeng, H. C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core–shell semiconductors. Small 1, 566–571 (2005).Article 
CAS 
PubMed 

Google Scholar 
Ding, S. et al. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. J. Am. Chem. Soc. 133, 21–23 (2010).Article 
PubMed 

Google Scholar 
Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Chen, D., Li, L., Tang, F. & Qi, S. Facile and scalable synthesis of tailored silica “nanorattle” structures. Adv. Mater. 21, 3804–3807 (2009).Article 
CAS 

Google Scholar 
Zhu, Y., Kockrick, E., Ikoma, T., Hanagata, N. & Kaskel, S. An efficient route to rattle-type Fe3O4@ SiO2 hollow mesoporous spheres using colloidal carbon spheres templates. Chem. Mater. 21, 2547–2553 (2009).Article 
CAS 

Google Scholar 
Yang, Y., Liu, J., Li, X., Liu, X. & Yang, Q. Organosilane-assisted transformation from core–shell to yolk–shell nanocomposites. Chem. Mater. 23, 3676–3684 (2011).Article 
CAS 

Google Scholar 
Wang, X., Feng, J., Bai, Y., Zhang, Q. & Yin, Y. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116, 10983–11060 (2016).Article 
CAS 
PubMed 

Google Scholar 
Purbia, R. & Paria, S. Yolk/shell nanoparticles: Classifications, synthesis, properties, and applications. Nanoscale 7, 19789–19873 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Yang, L., Guo, H., Wang, L. & Zhang, J. A facile “polystyrene-dissolving” strategy to hollow periodic mesoporous organosilica with flexible structure-tailorability. Micropor. Mesopor. Mat 239, 173–179 (2017).Article 
CAS 

Google Scholar 
Dai, J. et al. Yolk–shell Fe 3 O 4@ SiO 2@ PMO: Amphiphilic magnetic nanocomposites as an adsorbent and a catalyst with high efficiency and recyclability. Green Chem. 19, 1336–1344 (2017).Article 
CAS 

Google Scholar 
Wang, H. et al. Preparation of highly dispersed W/Al2O3 hydrodesulfurization catalysts via a microwave hydrothermal method: Effect of oxalic acid. Arab. J. Chem. 9, 18–24. https://doi.org/10.1016/j.arabjc.2014.11.023 (2016).Article 
ADS 
CAS 

Google Scholar 
Liu, J., Qiao, S. Z., Budi-Hartono, S. & Lu, G. Q. M. Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. 122, 5101–5105 (2010).Article 
ADS 

Google Scholar 
Pandarus, V., Ciriminna, R., Beland, F. & Pagliaro, M. A new class of heterogeneous platinum catalysts for the chemoselective hydrogenation of nitroarenes. Adv. Synth. Catal. 353, 1306–1316 (2011).Article 
CAS 

Google Scholar 
Mikami, Y. et al. Highly chemoselective reduction of nitroaromatic compounds using a hydrotalcite-supported silver-nanoparticle catalyst under a CO atmosphere. Chem. Lett. 39, 223–225 (2010).Article 
CAS 

Google Scholar 
Ono, N. The Nitro-Aldol (Henry) Reaction. The Nitro Group in Organic Synthesis 30 (Wiley-VCH, 2001).Book 

Google Scholar 
Lawrence, S. A. Amines: Synthesis, Properties and Applications (Cambridge University Press, 2004).
Google Scholar 
Mohan, V. et al. Advantage of Ni/SBA-15 catalyst over Ni/MgO catalyst in terms of catalyst stability due to release of water during nitrobenzene hydrogenation to aniline. Catal. Commun. 18, 89–92 (2012).Article 
CAS 

Google Scholar 
Zengin, N., Göksu, H. & Şen, F. Chemoselective hydrogenation of aromatic nitro compounds in the presence of homogeneous Pd based catalysts. Chemosphere 282, 130887 (2021).Article 
CAS 
PubMed 

Google Scholar 
Loghmani, M. H. & Shojaei, A. F. Hydrogen production through hydrolysis of sodium borohydride: Oleic acid stabilized Co–La–Zr–B nanoparticle as a novel catalyst. Energy 68, 152–159 (2014).Article 
CAS 

Google Scholar 
Shil, A. K., Sharma, D., Guha, N. R. & Das, P. Solid supported Pd (0): An efficient recyclable heterogeneous catalyst for chemoselective reduction of nitroarenes. Etrahedron. Lett. 53, 4858–4861 (2012).Article 
CAS 

Google Scholar 
Fountoulaki, S. et al. Mechanistic studies of the reduction of nitroarenes by NaBH4 or hydrosilanes catalyzed by supported gold nanoparticles. ACS Catal. 4, 3504–3511 (2014).Article 
CAS 

Google Scholar 
Schlesinger, H. et al. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1. J. Am. Chem. Soc. 75, 215–219 (1953).Article 
CAS 

Google Scholar 
Saavedra, J. Z. et al. Reaction of InCl3 with various reducing agents: InCl3–NaBH4-mediated reduction of aromatic and aliphatic nitriles to primary amines. J. Org. Chem. 77, 221–228 (2011).Article 
PubMed 

Google Scholar 
Wang, P., Liu, H., Niu, J., Li, R. & Ma, J. Entangled Pd complexes over Fe 3 O 4@ SiO 2 as supported catalysts for hydrogenation and Suzuki reactions. Catal. Sci. Tech. 4, 1333–1339 (2014).Article 
CAS 

Google Scholar 
Lin, F.-H. & Doong, R.-A. Catalytic nanoreactors of Au@ Fe3O4 yolk-shell nanostructures with various au sizes for efficient nitroarene reduction. J. Phys. Chem. C 121, 7844–7853 (2017).Article 
CAS 

Google Scholar 
Lopes, R., Pereira, M. M. & Royo, B. Selective reduction of nitroarenes with silanes catalyzed by nickel N-heterocyclic carbene complexes. ChemCatChem 9, 3073–3077 (2017).Article 
CAS 

Google Scholar 
Kadam, H. K. & Tilve, S. G. Advancement in methodologies for reduction of nitroarenes. RSC Adv. 5, 83391–83407 (2015).Article 
ADS 
CAS 

Google Scholar 
Gawande, M. B. et al. Regio-and chemoselective reduction of nitroarenes and carbonyl compounds over recyclable magnetic ferrite nickel nanoparticles (Fe3O4 Ni) by using glycerol as a hydrogen source. Chem.-A Eur. J. 18, 12628–12632 (2012).Article 
CAS 

Google Scholar 
Jang, Y. et al. Simple one-pot synthesis of Rh–Fe 3 O 4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes. Chem. Commun. 47, 3601–3603 (2011).Article 
CAS 

Google Scholar 
Zhang, H., Gao, S., Shang, N., Wang, C. & Wang, Z. Copper ferrite–graphene hybrid: A highly efficient magnetic catalyst for chemoselective reduction of nitroarenes. RSC Adv. 4, 31328–31332 (2014).Article 
ADS 
CAS 

Google Scholar 
Feng, C., Zhang, H.-Y., Shang, N.-Z., Gao, S.-T. & Wang, C. Magnetic graphene nanocomposite as an efficient catalyst for hydrogenation of nitroarenes. Chin. Chem. Lett. 24, 539–541 (2013).Article 
CAS 

Google Scholar 
Choi, Y. et al. Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. J. Mater. Chem. 21, 15431–15436 (2011).Article 
CAS 

Google Scholar 
He, G. et al. Fe 3 O 4@ graphene oxide composite: A magnetically separable and efficient catalyst for the reduction of nitroarenes. Mater. Res. Bull. 48, 1885–1890 (2013).Article 
CAS 

Google Scholar 
Gawande, M. B. et al. First application of core-shell Ag@ Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds. RSC Adv. 3, 1050–1054 (2013).Article 
ADS 
CAS 

Google Scholar 
Zeynizadeh, B., Mohammadzadeh, I., Shokri, Z. & Hosseini, S. A. Synthesis and characterization of NiFe 2 O 4@ Cu nanoparticles as a magnetically recoverable catalyst for reduction of nitroarenes to arylamines with NaBH 4. J. Colloid Interface Sci. 500, 285–293 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Mirbagheri, R., Elhamifar, D. & Hajati, S. Ru-containing magnetic yolk–shell structured nanocomposite: A powerful, recoverable and highly durable nanocatalyst. RSC Adv. 11, 10243–10252 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Norouzi, M. & Elhamifar, D. Magnetic yolk-shell structured methylene and propylamine based mesoporous organosilica nanocomposite: A highly recoverable and durable nanocatalyst with improved efficiency. Colloids Surfaces A: Physicochem. Eng. Aspects 615, 126226 (2021).Article 
CAS 

Google Scholar 
Haydari, Z., Elhamifar, D., Shaker, M. & Norouzi, M. Magnetic nanoporous MCM-41 supported melamine: A powerful nanocatalyst for synthesis of biologically active 2-amino-3-cyanopyridines. Appl. Surface Sci. Adv. 5, 100096 (2021).Article 

Google Scholar 
Elhamifar, D., Ramazani, Z., Norouzi, M. & Mirbagheri, R. Magnetic iron oxide/phenylsulfonic acid: A novel, efficient and recoverable nanocatalyst for green synthesis of tetrahydrobenzo[b]pyrans under ultrasonic conditions. J. Colloid Interface Sci. 511, 392–401. https://doi.org/10.1016/j.jcis.2017.10.013 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Norouzi, M., Elhamifar, D., Mirbagheri, R. & Ramazani, Z. Synthesis, characterization and catalytic application of a novel ethyl and boron sulfonic acid based bifunctional periodic mesoporous organosilica. J. Taiwan Inst. Chem. Eng. 89, 234–244. https://doi.org/10.1016/j.jtice.2018.05.011 (2018).Article 
CAS 

Google Scholar 
Asadbegi, S., Bodaghifard, M. A. & Mobinikhaledi, A. Poly N, N-dimethylaniline-formaldehyde supported on silica-coated magnetic nanoparticles: A novel and retrievable catalyst for green synthesis of 2-amino-3-cyanopyridines. Res. Chem. Intermed. 46, 1629–1643. https://doi.org/10.1007/s11164-017-3200-4 (2020).Article 
CAS 

Google Scholar 
Akhavan, M., Foroughifar, N., Pasdar, H., Khajeh-Amiri, A. & Bekhradnia, A. Copper(II)-complex functionalized magnetite nanoparticles: A highly efficient heterogeneous nanocatalyst for the synthesis of 5-arylidenthiazolidine-2,4-diones and 5-arylidene-2-thioxothiazolidin-4-one. Trans. Metal Chem. 42, 543–552. https://doi.org/10.1007/s11243-017-0159-3 (2017).Article 
CAS 

Google Scholar 
Neysi, M., Zarnegaryan, A. & Elhamifar, D. Core–shell structured magnetic silica supported propylamine/molybdate complexes: An efficient and magnetically recoverable nanocatalyst. New J. Chem. 43, 12283–12291. https://doi.org/10.1039/C9NJ01160A (2019).Article 
CAS 

Google Scholar 
Mayerhöfer, T. G., Pahlow, S., Hübner, U. & Popp, J. R. CaF2: An ideal substrate material for infrared spectroscopy?. Anal. Chem. 92, 9024–9031 (2020).Article 
PubMed 

Google Scholar 
Mayerhöfer, T. G. & Popp, J. The electric field standing wave effect in infrared transflection spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 283–289 (2018).Article 
ADS 
PubMed 

Google Scholar 
Mayerhöfer, T. G., Pahlow, S., Hübner, U. & Popp, J. Removing interference-based effects from the infrared transflectance spectra of thin films on metallic substrates: A fast and wave optics conform solution. Analyst 143, 3164–3175 (2018).Article 
ADS 
PubMed 

Google Scholar 
Kassaee, M., Masrouri, H. & Movahedi, F. Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Appl. Catal. A 395, 28–33 (2011).Article 
CAS 

Google Scholar 
Yue, Q. et al. Plasmolysis-inspired nanoengineering of functional yolk–shell microspheres with magnetic core and mesoporous silica shell. J. Am. Chem. Soc. 139, 15486–15493 (2017).Article 
CAS 
PubMed 

Google Scholar 
Yu, L. et al. Nonsacrificial self-template synthesis of colloidal magnetic yolk–shell mesoporous organosilicas for efficient oil/water interface catalysis. Small 15, 1805465 (2019).Article 

Google Scholar 
Jin, C. et al. Versatile rattle-type magnetic mesoporous silica spheres, working as adsorbents and nanocatalyst containers. J. Sol-Gel Sci. Technol. 77, 279–287 (2016).Article 
CAS 

Google Scholar 
Papadas, I. T., Fountoulaki, S., Lykakis, I. N. & Armatas, G. S. Controllable synthesis of mesoporous iron oxide nanoparticle assemblies for chemoselective catalytic reduction of nitroarenes. Chem. Eur. J. 22, 4600–4607 (2016).Article 
CAS 
PubMed 

Google Scholar 
Davarpanah, J. & Kiasat, A. R. Catalytic application of silver nanoparticles immobilized to rice husk-SiO 2-aminopropylsilane composite as recyclable catalyst in the aqueous reduction of nitroarenes. Catal. Commun. 41, 6–11 (2013).Article 
CAS 

Google Scholar 
Nasab, M. J. & Kiasat, A. R. Multifunctional Fe 3 O 4@ n SiO 2@ m SiO 2/Pr-Imi-NH 2· Ag core–shell microspheres as highly efficient catalysts in the aqueous reduction of nitroarenes: Improved catalytic activity and facile catalyst recovery. RSC Adv. 6, 41871–41877 (2016).Article 
ADS 
CAS 

Google Scholar 
Duan, Y. et al. Synthesis of Pd/SBA-15 catalyst employing surface-bonded vinyl as a reductant and its application in the hydrogenation of nitroarenes. RSC Adv. 7, 3443–3449 (2017).Article 
ADS 
CAS 

Google Scholar 
Liu, C., Tan, R., Yu, N. & Yin, D. Pt–Pd bi-metal nanoparticles captured and stabilized by imine groups in a periodic mesoporous organosilica of SBA-15 for hydrogenation of nitrobenzene. Micropor. Mesopor. Mater. 131, 162–169 (2010).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles