Actinium chelation and crystallization in a macromolecular scaffold

Kim, Y.-S. & Brechbiel, M. W. An overview of targeted alpha therapy. Tumor Biol. 33, 573–590 (2012).Article 
CAS 

Google Scholar 
Sgouros, G., Bodei, L., McDevitt, M. R. & Nedrow, J. R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat. Rev. Drug Discov. 19, 589–608 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kramer-Marek, G. & Capala, J. The role of nuclear medicine in modern therapy of cancer. Tumor Biol. 33, 629–640 (2012).Article 
CAS 

Google Scholar 
Poty, S., Francesconi, L. C., McDevitt, M. R., Morris, M. J. & Lewis, J. S. \({{{{{\rm{\alpha }}}}}}\)-Emitters for radiotherapy: from basic radiochemistry to clinical studies—part 1. J. Nucl. Med. 59, 878–884 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Geerlings, M. W., Kaspersen, F. M., Apostolidis, C. & van der Hout, R. The feasibility of 225Ac as a source of \({{{{{\rm{\alpha }}}}}}\)-particles in radioimmunotherapy. Nucl. Med. Commun. 14, 121–125 (1993).Article 
CAS 
PubMed 

Google Scholar 
McDevitt, M. R. et al. Tumor therapy with targeted atomic nanogenerators. Science 294, 1537–1540 (2001).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Morgan, K. A., Rudd, S. E., Noor, A. & Donnelly, P. S. Theranostic nuclear medicine with gallium-68, lutetium-177, copper-64/67, actinium-225, and lead-212/203 radionuclides. Chem. Rev. 123, 12004–12035 (2023).Article 
CAS 
PubMed 

Google Scholar 
Morgenstern, A., Apostolidis, C. & Bruchertseifer, F. Supply and clinical application of actinium-225 and bismuth-213. Sem. Nucl. Med. 50, 119–123 (2020).Article 

Google Scholar 
Kratochwil, C. et al. 225Ac-PSMA-617 for PSMA-targeted \({{{{{\rm{\alpha }}}}}}\)-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med. 57, 1941–1944 (2016).Article 
CAS 
PubMed 

Google Scholar 
Boll, R. A., Malkemus, D. & Mirzadeh, S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat. Isot. 62, 667–679 (2005).Article 
CAS 
PubMed 

Google Scholar 
Bruchertseifer, F., Kellerbauer, A., Malmbeck, R. & Morgenstern, A. Targeted alpha therapy with bismuth-213 and actinium-225: Meeting future demand. J. Label. Comp. Radiopharm. 62, 794–802 (2019).Article 
CAS 

Google Scholar 
Thiele, N. A. & Wilson, J. J. Actinium-225 for targeted α therapy: coordination chemistry and current chelation approaches. Cancer Biother Radiopharm. 33, 336–348 (2018).PubMed 
PubMed Central 

Google Scholar 
Jonathan, S., Ken, H. & Lisa, B. The future of targeted \({{{{{\rm{\alpha }}}}}}\)-therapy is bright, but rigorous studies are necessary to advance the field. J. Nucl. Med. 64, 219–220 (2023).Article 

Google Scholar 
Kirby, H. W. & Morss, L. R. “Actinium” in The Chemistry of the Actinide and Transactinide Elements (eds Morss L. R., Edelstein N. M. & Fuger J.) 18–51 (Springer, 2006).Thiele, N. A. et al. An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy. Angew. Chem. Int. Ed. 56, 14712–14717 (2017).Article 
CAS 

Google Scholar 
Morgenstern, A. et al. Computer-assisted design of macrocyclic chelators for actinium-225 radiotherapeutics. Inorg. Chem. 60, 623–632 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yang, H. et al. Harnessing \({{{{{\rm{\alpha }}}}}}\)-emitting radionuclides for therapy: radiolabeling method review. J. Nucl. Med. 63, 5–13 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Carbo-Bague, I. et al. Comparative study of a decadentate acyclic chelate, HOPO-O10, and its octadentate analogue, HOPO-O8, for radiopharmaceutical applications. Inorg. Chem. 62, 20549–20566 (2023).Article 
CAS 
PubMed 

Google Scholar 
Matazova, E. V. et al. Insights into actinium complexes with tetraacetates─AcBATA versus AcDOTA: thermodynamic, structural, and labeling properties. Inorg. Chem. 62, 12223–12236 (2023).Article 
CAS 
PubMed 

Google Scholar 
Aldrich, K. E. et al. Preparation of an actinium-228 generator. Inorg. Chem. 59, 3200–3206 (2020).Article 
CAS 
PubMed 

Google Scholar 
Gao, Y., Grover, P. & Schreckenbach, G. Stabilization of hydrated AcIII cation: the role of superatom states in actinium-water bonding. Chem. Sci. 12, 2655–2666 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deblonde, G. J.-P. et al. Capturing an elusive but critical element: natural protein enables actinium chemistry. Sci. Adv. 7, eabk0273 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ferrier, M. G. et al. Spectroscopic and computational investigation of actinium coordination chemistry. Nat. Commun. 7, 12312 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ferrier, M. G. et al. Synthesis and characterization of the actinium aquo ion. ACS Cent. Sci. 3, 176–185 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stein, B. W. et al. Advancing chelation chemistry for actinium and other +3 f-elements, Am, Cm, and La. J. Am. Chem. Soc. 141, 19404–19414 (2019).Article 
CAS 
PubMed 

Google Scholar 
Jones, Z. R. et al. Advancing understanding of actinide(III) (Ac, Am, Cm) aqueous complexation chemistry. Chem. Sci. 12, 5638–5654 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fried, S., Hagemann, F. & Zachariasen, W. H. The preparation and identification of some pure actinium compounds. J. Am. Chem. Soc. 72, 771–775 (1950).Article 
CAS 

Google Scholar 
Deblonde, G. J. P., Zavarin, M. & Kersting, A. B. The coordination properties and ionic radius of actinium: A 120-year-old enigma. Coord. Chem. Rev. 446, 214130 (2021).Article 
CAS 

Google Scholar 
Abergel, R. J. et al. Biomimetic actinide chelators: an update on the preclinical development of the orally active hydroxypyridonate decorporation agents 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Health Phys. 99, 401–407 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Carter, K. P. et al. Developing scandium and yttrium coordination chemistry to advance theranostic radiopharmaceuticals. Commun. Chem. 3, 61 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sturzbecher-Hoehne, M. et al. 3,4,3-LI(1,2-HOPO): In vitro formation of highly stable lanthanide complexes translates into efficacious in vivo europium decorporation. Dalton Trans. 40, 8340–8346 (2011).Article 
CAS 
PubMed 

Google Scholar 
Sturzbecher-Hoehne, M., Yang, P., D’Aléo, A. & Abergel, R. J. Intramolecular sensitization of americium luminescence in solution: shining light on short-lived forbidden 5f transitions. Dalton Trans. 45, 9912–9919 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sturzbecher-Hoehne, M., Kullgren, B., Jarvis, E. E., An, D. D. & Abergel, R. J. Highly luminescent and stable hydroxypyridinonate complexes: a step towards new curium decontamination strategies. Chem. Eur. J. 20, 9962–9968 (2014).Article 
CAS 
PubMed 

Google Scholar 
Deblonde, G. J. P. et al. Chelation and stabilization of berkelium in oxidation state +IV. Nat. Chem. 9, 843–849 (2017).Article 
CAS 
PubMed 

Google Scholar 
Carter, K. P. et al. Structural and spectroscopic characterization of an einsteinium complex. Nature 590, 85–88 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Pallares, R. M., Carter, K. P., Faulkner, D. & Abergel, R. J. “Macromolecular crystallography for f-element complex characterization”. In Methods in Enzymology: Rare-Earth Element Biochemistry, Characterization and Applications of Lanthanide-Binding Biomolecules (ed Cotruvo, J. A.) 139–155 (Academic Press, 2021).Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10, 1033–1043 (2002).Article 
CAS 
PubMed 

Google Scholar 
Allred, B. E. et al. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proc. Natl. Acad. Sci. USA 112, 10342–10347 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zielinska, B., Apostolidis, C., Bruchertseifer, F. & Morgenstern, A. An improved method for the production of Ac‐225/Bi‐213 from Th‐229 for targeted alpha therapy. Solvent Extraction Ion. Exch. 25, 339–349 (2007).Article 
CAS 

Google Scholar 
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).Article 
ADS 

Google Scholar 
Hoette, T. M., Abergel, R. J., Xu, J., Strong, R. K. & Raymond, K. N. The role of electrostatics in siderophore recognition by the immunoprotein siderocalin. J. Am. Chem. Soc. 130, 17584–17592 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kuzmič, P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 237, 260–273 (1996).Article 
PubMed 

Google Scholar 
Cosby, A. G. et al. Siderocalin fusion proteins enable a new 86Y/90Y theranostic approach. RSC Chem. Biol. 4, 587–591 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Clifton, M. C. et al. Parsing the functional specificity of siderocalin/lipocalin 2/NGAL for siderophores and related small-molecule ligands. J. Struct. Biol. X 2, 100008 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
Makarova, T., Sinitsyna, G., Stepanov, A., Shestakova, I. & Shestakov, B. Complex formation of actinium. I. Determination of the stability constants of ethylenediaminetetraacetate complexes of actinium and its separation from lanthanum in solutions of EDTA by the method of electromigration. Sov. Radiochem. 14, 555–557 (1972).
Google Scholar 
Chatterjee, A., Maslen, E. & Watson, K. The effect of the lanthanoid contraction on the nonaaqualanthanoid(III) tris(trifluoromethanesulfonates). Acta Crystallogr. B 44, 381–386 (1988).Article 
ADS 

Google Scholar 
Kelley, M. P. et al. Bond covalency and oxidation state of actinide ions complexed with therapeutic chelating agent 3,4,3-LI(1,2-HOPO). Inorg. Chem. 57, 5352–5363 (2018).Article 
CAS 
PubMed 

Google Scholar 
Nelson, A.-G. D. et al. Further examples of the failure of surrogates to properly model the structural and hydrothermal chemistry of transuranium elements: insights provided by uranium and neptunium diphosphonates. Inorg. Chem. 47, 4945–4951 (2008).Article 
CAS 
PubMed 

Google Scholar 
Scerri, E. Which Elements Belong in Group 3 of the Periodic Table? Chem. Int. 38, 22–23 (2016).

Hot Topics

Related Articles