Fabrication of SrTiO3 anchored rGO/g-C3N4 photocatalyst for the removal of mixed dye from wastewater: dual photocatalytic mechanism

Gong, J. et al. A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue. J. Colloid Interface Sci. 445, 195–204 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Shi, H. et al. Synthesis of three-dimensional (3D) hierarchical titanate nanoarchitectures from Ti particles and their photocatalytic degradation of tetracycline hydrochloride under visible-light irradiation. J. Nanosci. Nanotechnol. 14, 6934–6940 (2014).Article 
CAS 
PubMed 

Google Scholar 
Gómez-Pastora, J. et al. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 310, 407–427 (2017).Article 

Google Scholar 
Chong, M. N., Jin, B., Chow, C. W. K. & Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 44, 2997–3027 (2010).Article 
CAS 
PubMed 

Google Scholar 
Vennela, B. A. Structural and optical properties of Co3O4 nanoparticles prepared by sol–gel technique for photocatalytic application. Int. J. Electrochem. Sci. https://doi.org/10.20964/2019.04.40 (2019).Article 

Google Scholar 
Sun, T., Liu, E., Liang, X., Hu, X. & Fan, J. Enhanced hydrogen evolution from water splitting using Fe–Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method. Appl. Surf. Sci. 347, 696–705 (2015).Article 
ADS 
CAS 

Google Scholar 
Mali, M. G., An, S., Liou, M., Al-Deyab, S. S. & Yoon, S. S. Photoelectrochemical solar water splitting using electrospun TiO2 nanofibers. Appl. Surf. Sci. 328, 109–114 (2015).Article 
ADS 
CAS 

Google Scholar 
Cheng, X., Zhang, Y., Hu, H., Shang, M. & Bi, Y. High-efficiency SrTiO3/TiO2 hetero-photoanode for visible-light water splitting by charge transport design and optical absorption management. Nanoscale 10, 3644–3649 (2018).Article 
CAS 
PubMed 

Google Scholar 
Bashiri, R. et al. Photoelectrochemical water splitting with tailored TiO2/SrTiO3@g-C3N4 heterostructure nanorod in photoelectrochemical cell. Diam. Relat. Mater. 85, 5–12 (2018).Article 
ADS 
CAS 

Google Scholar 
Muñoz-Batista, M. J. et al. Acetaldehyde degradation under UV and visible irradiation using CeO2–TiO2 composite systems: Evaluation of the photocatalytic efficiencies. Chem. Eng. J. 255, 297–306 (2014).Article 

Google Scholar 
Li, J. et al. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation. J. Hazard. Mater. 262, 482–488 (2013).Article 
CAS 
PubMed 

Google Scholar 
Kato, H., Sasaki, Y., Shirakura, N. & Kudo, A. Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J. Mater. Chem. A 1, 12327 (2013).Article 
CAS 

Google Scholar 
Maeda, K. Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 6, 2167–2173 (2014).Article 
CAS 
PubMed 

Google Scholar 
Alammar, T., Hamm, I., Wark, M. & Mudring, A.-V. Low-temperature route to metal titanate perovskite nanoparticles for photocatalytic applications. Appl. Catal. B Environ. 178, 20–28 (2015).Article 
CAS 

Google Scholar 
He, G.-L. et al. One-pot hydrothermal synthesis of SrTiO3-reduced graphene oxide composites with enhanced photocatalytic activity for hydrogen production. J. Mol. Catal. A Chem. 423, 70–76 (2016).Article 
CAS 

Google Scholar 
Wang, Y. et al. Synthesis of fern-like Ag/AgCl/CaTiO3 plasmonic photocatalysts and their enhanced visible-light photocatalytic properties. RSC Adv. 6, 47873–47882 (2016).Article 
ADS 
CAS 

Google Scholar 
Kumar, A. et al. Three-dimensional carbonaceous aerogels embedded with Rh-SrTiO3 for enhanced hydrogen evolution triggered by efficient charge transfer and light absorption. ACS Appl. Energy Mater. 3, 12134–12147 (2020).Article 
CAS 

Google Scholar 
Liu, J. et al. Synthesis of MoS2/SrTiO3 composite materials for enhanced photocatalytic activity under UV irradiation. J. Mater. Chem. A 3, 706–712 (2015).Article 
ADS 
CAS 

Google Scholar 
Zakaria, M. B., Malgras, V., Takei, T., Li, C. & Yamauchi, Y. Layer-by-layer motif hybridization: nanoporous nickel oxide flakes wrapped into graphene oxide sheets toward enhanced oxygen reduction reaction. Chem. Commun. 51, 16409–16412 (2015).Article 
CAS 

Google Scholar 
Li, Q., Mahmood, N., Zhu, J., Hou, Y. & Sun, S. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 9, 668–683 (2014).Article 
CAS 

Google Scholar 
Higgins, D., Zamani, P., Yu, A. & Chen, Z. The application of graphene and its composites in oxygen reduction electrocatalysis: A perspective and review of recent progress. Energy Environ. Sci. 9, 357–390 (2016).Article 
CAS 

Google Scholar 
Sadiq, M. M. J., Shenoy, U. S. & Bhat, D. K. Novel RGO–ZnWO4–Fe3O4 nanocomposite as high performance visible light photocatalyst. RSC Adv. 6, 61821–61829 (2016).Article 
ADS 
CAS 

Google Scholar 
Mohamed, M. J. S., Shenoy, U. S. & Bhat, D. K. High performance dual catalytic activity of novel zinc tungstate—reduced graphene oxide nanocomposites. Adv. Sci. Eng. Med. 9, 115–121 (2017).Article 
CAS 

Google Scholar 
Meng, A., Zhou, S., Wen, D., Han, P. & Su, Y. g-C3N4/CoTiO3 S-scheme heterojunction for enhanced visible light hydrogen production through photocatalytic pure water splitting. Chin. J. Catal. 43, 2548–2557 (2022).Article 
CAS 

Google Scholar 
Zhao, Z., Sun, Y. & Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 7, 15–37 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ong, W.-J., Tan, L.-L., Ng, Y. H., Yong, S.-T. & Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?. Chem. Rev. 116, 7159–7329 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhao, B. et al. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application. Chin. J. Catal. 52, 127–143 (2023).Article 
CAS 

Google Scholar 
Huang, Y., Mei, F., Zhang, J., Dai, K. & Dawson, G. Construction of 1D/2D W18O49/Porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution. Acta Phys. Chim. Sin. https://doi.org/10.3866/PKU.WHXB202108028 (2021).Article 

Google Scholar 
Wang, P. et al. Unveiling the mechanism of electron transfer facilitated regeneration of active Fe2+ by nano-dispersed iron/graphene catalyst for phenol removal. RSC Adv. 7, 26983–26991 (2017).Article 
ADS 
CAS 

Google Scholar 
Rosy, A. & Kalpana, G. Reduced graphene oxide/strontium titanate heterostructured nanocomposite as sunlight driven photocatalyst for degradation of organic dye pollutants. Curr. Appl. Phys. 18, 1026–1033 (2018).Article 
ADS 

Google Scholar 
He, C. et al. Core-shell SrTiO3/graphene structure by chemical vapor deposition for enhanced photocatalytic performance. Appl. Surf. Sci. 436, 373–381 (2018).Article 
ADS 
CAS 

Google Scholar 
Luo, Y. et al. Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation. Appl. Catal. B Environ. 247, 1–9 (2019).Article 
CAS 

Google Scholar 
Kumar, S., Tonda, S., Baruah, A., Kumar, B. & Shanker, V. Synthesis of novel and stable g-C3N4/N-doped SrTiO3 hybrid nanocomposites with improved photocurrent and photocatalytic activity under visible light irradiation. Dalt. Trans. 43, 16105–16114 (2014).Article 
CAS 

Google Scholar 
Chen, X. et al. A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4 hybrid nanocomposites with enhanced visible light photocatalytic activity. J. Alloys Compd. 647, 456–462 (2015).Article 
CAS 

Google Scholar 
Xu, X., Liu, G., Randorn, C. & Irvine, J. T. S. g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation. Int. J. Hydrog. Energy 36, 13501–13507 (2011).Article 
ADS 
CAS 

Google Scholar 
Wang, G., Qin, Y., Cheng, J. & Wang, Y. Influence of Zn doping on the photocatalytic property of SrTiO3. J. Fuel Chem. Technol. 38, 502–507 (2010).Article 
CAS 

Google Scholar 
Rahman, Q. I., Ahmad, M., Misra, S. K. & Lohani, M. Efficient degradation of methylene blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light. J. Nanosci. Nanotechnol. 12, 7181–7186 (2012).Article 
CAS 
PubMed 

Google Scholar 
Zhang, L., Zhang, J., Yu, H. & Yu, J. Emerging S-scheme photocatalyst. Adv. Mater. 34, 66 (2022).
Google Scholar 
He, H. et al. Interface chemical bond enhanced ions intercalated carbon nitride/CdSe-diethylenetriamine S-scheme heterojunction for photocatalytic H2O2 synthesis in pure water. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202315426 (2024).Article 
PubMed 

Google Scholar 
Zhang, H., Shao, C., Wang, Z., Zhang, J. & Dai, K. One-step synthesis of seamlessly contacted non-precious metal cocatalyst modified CdS hollow nanoflowers spheres for photocatalytic hydrogen production. J. Mater. Sci. Technol. 195, 146–154 (2024).Article 

Google Scholar 
Li, Z. et al. Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting. Nano Energy 59, 537–544 (2019).Article 
CAS 

Google Scholar 
Jamdagni, P., Kumar, A., Srivastava, S., Pandey, R. & Tankeshwar, K. Janus PtSSe-based van der Waals heterostructures for direct Z-scheme photocatalytic water splitting. Int. J. Hydrog. Energy 66, 268–277 (2024).Article 
ADS 
CAS 

Google Scholar 
Venkatesh, G. et al. Construction and investigation on perovskite-type SrTiO3@ reduced graphene oxide hybrid nanocomposite for enhanced photocatalytic performance. Colloids Surf. A Physicochem. Eng. Asp. 629, 127523 (2021).Article 
CAS 

Google Scholar 
Sundaram, I. M., Kalimuthu, S. & Ponniah, G. Highly active ZnO modified g-C3N4 Nanocomposite for dye degradation under UV and Visible Light with enhanced stability and antimicrobial activity. Compos. Commun. 5, 64–71 (2017).Article 

Google Scholar 
Aslam, I. et al. Synthesis of novel g-C3N4 microrods: A metal-free visible-light-driven photocatalyst. Mater. Sci. Energy Technol. 2, 401–407 (2019).
Google Scholar 
Wang, M. et al. Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting. ACS Sustain. Chem. Eng. 5, 7878–7886 (2017).Article 
CAS 

Google Scholar 
Kumar, A. et al. Recyclable, bifunctional composites of perovskite type N-CaTiO3 and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Mater. Chem. Front. 1, 2391–2404 (2017).Article 
CAS 

Google Scholar 
Jayabal, P., Sasirekha, V., Mayandi, J., Jeganathan, K. & Ramakrishnan, V. A facile hydrothermal synthesis of SrTiO3 for dye sensitized solar cell application. J. Alloys Compd. 586, 456–461 (2014).Article 
CAS 

Google Scholar 
Xiao, F. et al. In situ hydrothermal fabrication of visible light-driven g-C3N4/SrTiO3 composite for photocatalytic degradation of TC. Environ. Sci. Pollut. Res. 27, 5788–5796 (2020).Article 
CAS 

Google Scholar 
Sharma, M., Mondal, D., Das, A. K. & Prasad, K. Production of partially reduced graphene oxide nanosheets using a seaweed sap. RSC Adv. 4, 64583–64588 (2014).Article 
ADS 
CAS 

Google Scholar 
Akhundi, A. & Habibi-Yangjeh, A. Novel magnetic g-C3N4/Fe3O4/AgCl nanocomposites: Facile and large-scale preparation and highly efficient photocatalytic activities under visible-light irradiation. Mater. Sci. Semicond. Process. 39, 162–171 (2015).Article 
CAS 

Google Scholar 
Wu, X. et al. Effect of morphology on the photocatalytic activity of g-C3N4 photocatalysts under visible-light irradiation. Mater. Sci. Semicond. Process. 32, 76–81 (2015).Article 
CAS 

Google Scholar 
Xu, H. et al. g-C3N4/Ag3PO4 composites with synergistic effect for increased photocatalytic activity under the visible light irradiation. Mater. Sci. Semicond. Process. 39, 726–734 (2015).Article 
CAS 

Google Scholar 
Ma, D. et al. Hydrothermal synthesis of an artificial Z-scheme visible light photocatalytic system using reduced graphene oxide as the electron mediator. Chem. Eng. J. 313, 1567–1576 (2017).Article 
ADS 
CAS 

Google Scholar 
Bao, N. et al. Synthesis of porous carbon-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 403, 682–690 (2017).Article 
ADS 
CAS 

Google Scholar 
Venkatesh, G. et al. Z-scheme heterojunction ZnSnO3/rGO/MoS2 nanocomposite for excellent photocatalytic activity towards mixed dye degradation. Int. J. Hydrog. Energy 47, 11863–11876 (2022).Article 
ADS 
CAS 

Google Scholar 
Gu, L., Wei, H., Peng, Z. & Wu, H. Defects enhanced photocatalytic performances in SrTiO3 using laser-melting treatment. J. Mater. Res. 32, 748–756 (2017).Article 
ADS 
CAS 

Google Scholar 
Gopi, P. K. et al. Platelet-structured strontium titanate perovskite decorated on graphene oxide as a nanocatalyst for electrochemical determination of neurotransmitter dopamine. New J. Chem. 44, 18431–18441 (2020).Article 
CAS 

Google Scholar 
Alkathy, M. S., Zabotto, F. L., Raju, K. C. J. & Eiras, J. A. Effect of defects on the band gap and photoluminescence emission of Bi and Li co-substituted barium strontium titanate ceramics. Mater. Chem. Phys. 275, 125235 (2022).Article 
CAS 

Google Scholar 
Yao, N. & Lun Yeung, K. Investigation of the performance of TiO2 photocatalytic coatings. Chem. Eng. J. 167, 13–21 (2011).Article 
CAS 
PubMed 

Google Scholar 
Elavarasan, N. et al. Synergistic S-scheme mechanism insights of g-C3N4 and rGO combined ZnO-Ag heterostructure nanocomposite for efficient photocatalytic and anticancer activities. J. Alloys Compd. 906, 164255 (2022).Article 
CAS 

Google Scholar 
Bantawal, H., Shenoy, U. S. & Bhat, D. K. Tuning the photocatalytic activity of SrTiO3 by varying the Sr/Ti ratio: Unusual effect of viscosity of the synthesis medium. J. Phys. Chem. C 122, 20027–20033 (2018).Article 
CAS 

Google Scholar 
Li, G. et al. Microwave synthesis of BiPO4 nanostructures and their morphology-dependent photocatalytic performances. J. Colloid Interface Sci. 363, 497–503 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Gopalakrishnan, A., Pratap Singh, S. & Badhulika, S. Reusable, free-standing MoS2/rGO/Cu2O ternary composite films for fast and highly efficient sunlight driven photocatalytic degradation. ChemistrySelect 5, 1997–2007 (2020).Article 
CAS 

Google Scholar 
Azad, S., Engelhard, M. H. & Wang, L.-Q. Adsorption and reaction of CO and CO2 on oxidized and reduced SrTiO3 (100) surfaces. J. Phys. Chem. B 109, 10327–10331 (2005).Article 
CAS 
PubMed 

Google Scholar 
Huang, B.-S., Su, E.-C. & Wey, M.-Y. Design of a Pt/TiO2–xNx/SrTiO3 triplejunction for effective photocatalytic H2 production under solar light irradiation. Chem. Eng. J. 223, 854–859 (2013).Article 
CAS 

Google Scholar 
Kiss, B. et al. Nano-structured rhodium doped SrTiO3–visible light activated photocatalyst for water decontamination. Appl. Catal. B Environ. 206, 547–555 (2017).Article 
CAS 

Google Scholar 
Sureshkumar, T. et al. Synthesis, characterization and photodegradation activity of graphitic C3N4–SrTiO3 nanocomposites. J. Photochem. Photobiol. A Chem. 356, 425–439 (2018).Article 
CAS 

Google Scholar 
Tan, L. et al. Synthesis of g-C3N4/CeO2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate. Appl. Surf. Sci. 356, 447–453 (2015).Article 
ADS 
CAS 

Google Scholar 
Joseph, S. et al. In situ S-doped ultrathin g-C3N4 nanosheets coupled with mixed-dimensional (3D/1D) nanostructures of silver vanadates for enhanced photocatalytic degradation of organic pollutants. New J. Chem. 43, 10618–10630 (2019).Article 
CAS 

Google Scholar 
Zheng, Z. et al. Correlation of the catalytic activity for oxidation taking place on various TiO2 surfaces with surface OH groups and surface oxygen vacancies. Chem. A Eur. J. 16, 1202–1211 (2010).Article 
CAS 

Google Scholar 
Puleo, F. et al. Palladium local structure of La1−xSrxCo1−yFey−0.03Pd0.03O3−δ perovskites synthesized using a one pot citrate method. Phys. Chem. Chem. Phys. 16, 22677–22686 (2014).Article 
CAS 
PubMed 

Google Scholar 
Luo, X.-L., He, G.-L., Fang, Y.-P. & Xu, Y.-H. Nickel sulfide/graphitic carbon nitride/strontium titanate (NiS/g-C3N4/SrTiO3) composites with significantly enhanced photocatalytic hydrogen production activity. J. Colloid Interface Sci. 518, 184–191 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Wang, C., Wang, N., Tian, Z., Luo, Y. & Liang, B. Synthesis of C3N4/rGO composites by low temperature and low pressure heat treatment and their photocatalytic properties. J. Inorg. Organomet. Polym. Mater. https://doi.org/10.1007/s10904-024-03029-z (2024).Article 

Google Scholar 
Ahmadi, M., Seyed Dorraji, M. S., Rasoulifard, M. H. & Amani-Ghadim, A. R. The effective role of reduced-graphene oxide in visible light photocatalytic activity of wide band gap SrTiO3 semiconductor. Sep. Purif. Technol. 228, 115771 (2019).Article 
CAS 

Google Scholar 
Tong, L. et al. Copper nanoparticles selectively encapsulated in an ultrathin carbon cage loaded on SrTiO3 as stable photocatalysts for visible-light H2 evolution via water splitting. Chem. Commun. 55, 12900–12903 (2019).Article 
CAS 

Google Scholar 
Li, C.-Q. et al. Oxygen vacancy engineered SrTiO3 nanofibers for enhanced photocatalytic H2 production. J. Mater. Chem. A 7, 17974–17980 (2019).Article 
ADS 
CAS 

Google Scholar 
Bantawal, H., Sethi, M., Shenoy, U. S. & Bhat, D. K. Porous graphene wrapped SrTiO3 nanocomposite: Sr–C bond as an effective coadjutant for high performance photocatalytic degradation of methylene blue. ACS Appl. Nano Mater. 2, 6629–6636 (2019).Article 
CAS 

Google Scholar 
Sadiq, M. M. J., Shenoy, U. S. & Bhat, D. K. Synthesis of BaWO4/NRGO–g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach. Front. Mater. Sci. 12, 247–263 (2018).Article 

Google Scholar 
Wu, Y., Sun, Z., Ruan, K., Xu, Y. & Zhang, H. Enhancing photoluminescence with Li-doped CaTiO3:Eu3+ red phosphors prepared by solid state synthesis. J. Lumin. 155, 269–274 (2014).Article 
CAS 

Google Scholar 
Ansari, S. A., Khan, M. M., Ansari, M. O. & Cho, M. H. Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite. Sol. Energy Mater. Sol. Cells 141, 162–170 (2015).Article 
CAS 

Google Scholar 
Ansari, S. A., Khan, M. M., Ansari, M. O. & Cho, M. H. Gold nanoparticles-sensitized wide and narrow band gap TiO2 for visible light applications: A comparative study. New J. Chem. 39, 4708–4715 (2015).Article 
CAS 

Google Scholar 
Palanisamy, G., Bhuvaneswari, K., Chinnadurai, A., Bharathi, G. & Pazhanivel, T. Magnetically recoverable multifunctional ZnS/Ag/CoFe2O4 nanocomposite for sunlight driven photocatalytic dye degradation and bactericidal application. J. Phys. Chem. Solids 138, 109231 (2020).Article 
CAS 

Google Scholar 
Palanisamy, G. et al. Two-dimensional g-C3N4 nanosheets supporting Co3O4–V2O5 nanocomposite for remarkable photodegradation of mixed organic dyes based on a dual Z-scheme photocatalytic system. Diam. Relat. Mater. 118, 108540 (2021).Article 
CAS 

Google Scholar 
Chiou, C.-H., Wu, C.-Y. & Juang, R.-S. Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions. Sep. Purif. Technol. 62, 559–564 (2008).Article 
CAS 

Google Scholar 
Khan, I., Khan, I., Usman, M., Imran, M. & Saeed, K. Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation. J. Mater. Sci. Mater. Electron. 31, 8971–8985 (2020).Article 
CAS 

Google Scholar 
Neena, D. et al. Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO. Sci. Rep. 8, 10691 (2018).Article 

Google Scholar 
Krishnan, S., Jaiganesh, P. S., Karunakaran, A., Kumarasamy, K. & Lin, M.-C. The effect of pH on the photocatalytic degradation of cationic and anionic dyes using polyazomethine/ZnO and polyazomethine/TiO2 nanocomposites. Int. J. Appl. Sci. Eng. 18, 1–8 (2021).Article 

Google Scholar 
Tenzin, T., Yashas, S. R., Anilkumar, K. M. & Shivaraju, H. P. UV–LED driven photodegradation of organic dye and antibiotic using strontium titanate nanostructures. J. Mater. Sci. Mater. Electron. 32, 21093–21105 (2021).Article 
CAS 

Google Scholar 
Khan, S., Noor, T., Iqbal, N. & Yaqoob, L. Photocatalytic dye degradation from textile wastewater: A review. ACS Omega 9, 21751–21767 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, B. et al. Synthesis of g-C3N4/BiOI/BiOBr heterostructures for efficient visible-light-induced photocatalytic and antibacterial activity. J. Mater. Sci. Mater. Electron. 29, 14300–14310 (2018).Article 
ADS 
CAS 

Google Scholar 
Chen, Q. et al. Enhanced visible-light driven photocatalytic activity of hybrid ZnO/g-C3N4 by high performance ball milling. J. Photochem. Photobiol. A Chem. 350, 1–9 (2018).Article 
ADS 
CAS 

Google Scholar 
Thangavel, S. et al. Graphdiyne–ZnO nanohybrids as an advanced photocatalytic material. J. Phys. Chem. C 119, 22057–22065 (2015).Article 
CAS 

Google Scholar 
Nezamzadeh-Ejhieh, A. & Karimi-Shamsabadi, M. Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J. 228, 631–641 (2013).Article 
CAS 

Google Scholar 
Regmi, C., Dhakal, D. & Lee, S. W. Visible-light-induced Ag/BiVO4 semiconductor with enhanced photocatalytic and antibacterial performance. Nanotechnology 29, 64001 (2018).Article 

Google Scholar 
Wang, L. et al. 3D porous ZnO–SnS p–n heterojunction for visible light driven photocatalysis. Phys. Chem. Chem. Phys. 19, 16576–16585 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Y. et al. Novel Z-scheme MoS2/Bi2WO6 heterojunction with highly enhanced photocatalytic activity under visible light irradiation. J. Alloys Compd. 854, 157224 (2021).Article 
CAS 

Google Scholar 
Xian, T. et al. Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity. Nanoscale Res. Lett. 9, 327 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Venkatesh, G., Geerthana, M., Prabhu, S., Ramesh, R. & Prabu, K. M. Enhanced photocatalytic activity of reduced graphene oxide/SrSnO3 nanocomposite for aqueous organic pollutant degradation. Optik 206, 1640–55 (2020).Article 

Google Scholar 
Kumar, A., Navakoteswara Rao, V., Kumar, A., Venkatakrishnan Shankar, M. & Krishnan, V. Interplay between mesocrystals of CaTiO3 and edge sulfur atom enriched MoS2 on reduced graphene oxide nanosheets: Enhanced photocatalytic performance under sunlight irradiation. ChemPhotoChem 4, 427–444 (2020).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles