Heterotrimeric collagen helix with high specificity of assembly results in a rapid rate of folding

Lukomski, S., Bachert, B. A., Squeglia, F. & Berisio, R. Collagen-like proteins of pathogenic streptococci. Mol. Microbiol. 103, 919–930 (2017).Article 
CAS 
PubMed 

Google Scholar 
Thomas, A. H., Edelman, E. R. & Stultz, C. M. Collagen fragments modulate innate immunity. Exp. Biol. Med. 232, 406–411 (2007).CAS 

Google Scholar 
Gordon, M. K. & Hahn, R. A. Collagens. Cell Tissue Res. 339, 247–257 (2009).Article 
PubMed 

Google Scholar 
Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).Article 
CAS 

Google Scholar 
Abendstein, L. et al. Complement is activated by elevated IgG3 hexameric platforms and deposits C4b onto distinct antibody domains. Nat. Commun. 14, 4027 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yu, L. T. et al. Hollow octadecameric self-assembly of collagen-like peptides. J. Am. Chem. Soc. 145, 5285–5296 (2023).Article 
CAS 
PubMed 

Google Scholar 
Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).Article 
CAS 
PubMed 

Google Scholar 
Brodsky, B. & Persikov, A. V. Molecular Structure of the Collagen Triple Helix Vol. 70 of Fibrous Proteins: Coiled-Coils, Collagen and Elastomers (Academic Press, 2005). https://www.sciencedirect.com/science/article/pii/S0065323305700097Shoulders, M. D., Guzei, I. A. & Raines, R. T. 4-Chloroprolines: synthesis, conformational analysis, and effect on the collagen triple helix. Biopolymers 89, 443–454 (2008).Article 
CAS 
PubMed 

Google Scholar 
Persikov, A. V., Ramshaw, J. A. M. & Brodsky, B. Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 280, 19343–19349 (2005).Article 
CAS 
PubMed 

Google Scholar 
Cole, C. C. et al. Cation–π interactions and their role in assembling collagen triple helices. Biomacromolecules 23, 4645–4654 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cole, C. C. et al. Stabilization of synthetic collagen triple helices: charge pairs and covalent capture. Biomacromolecules 24, 5083–5090 (2023).Article 
CAS 
PubMed 

Google Scholar 
Persikov, A. V., Ramshaw, J. A. M., Kirkpatrick, A. & Brodsky, B. Amino acid propensities for the collagen triple-helix. Biochemistry 39, 14960–14967 (2000).Article 
CAS 
PubMed 

Google Scholar 
Hentzen, N. B., Islami, V., Köhler, M., Zenobi, R. & Wennemers, H. A lateral salt bridge for the specific assembly of an ABC-type collagen heterotrimer. J. Am. Chem. Soc. 142, 2208–2212 (2020).Article 
CAS 
PubMed 

Google Scholar 
Canty, E. G. & Kadler, K. E. Collagen fibril biosynthesis in tendon: a review and recent insights. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133, 979–985 (2002).Article 
CAS 
PubMed 

Google Scholar 
Leikin, S., Rau, D. & Parsegian, V. Temperature-favoured assembly of collagen is driven by hydrophilic not hydrophobic interactions. Nat. Struct. Biol. 2, 205–210 (1995).Article 
CAS 
PubMed 

Google Scholar 
Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).Article 
CAS 
PubMed 

Google Scholar 
Stultz, C. M. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations. Protein Sci. 15, 2166–2177 (2006).Article 
CAS 
PubMed 

Google Scholar 
Baum, J. & Brodsky, B. Folding of peptide models of collagen and misfolding in disease. Curr. Opin. Struct. Biol. 9, 122–128 (1999).Article 
CAS 
PubMed 

Google Scholar 
Park, S., Klein, T. E. & Pande, V. S. Folding and misfolding of the collagen triple helix: Markov analysis of molecular dynamics simulations. Biophys. J. 93, 4108–4115 (2007).Article 
CAS 
PubMed 

Google Scholar 
Hartmann, J. & Zacharias, M. Mechanism of collagen folding propagation studied by molecular dynamics simulations. PLoS Comp. Biol. 17, e1009079 (2021).Article 
CAS 

Google Scholar 
Bretscher, L. E., Jenkins, C. L., Taylor, K. M., DeRider, M. L. & Raines, R. T. Conformational stability of collagen relies on a stereoelectronic effect. J. Am. Chem. Soc. 123, 777–778 (2001).Article 
CAS 
PubMed 

Google Scholar 
Bachmann, A., Kiefhaber, T., Boudko, S., Engel, J. & Bächinger, H. P. Collagen triple-helix formation in all-trans chains proceeds by a nucleation/growth mechanism with a purely entropic barrier. Proc. Natl Acad. Sci. USA 102, 13897–13902 (2005).Article 
CAS 
PubMed 

Google Scholar 
Favretto, F. et al. Catalysis of proline isomerization and molecular chaperone activity in a tug-of-war. Nat. Commun. 11, 6046 (2020).Article 
CAS 
PubMed 

Google Scholar 
Chen, J., Edwards, S. A., Grater, F. & Baldauf, C. On the cis to trans isomerization of prolyl–peptide bonds under tension. J. Phys. Chem. B 116, 9346–9351 (2012).Article 
CAS 
PubMed 

Google Scholar 
Buevich, A. V., Dai, Q.-H., Liu, X., Brodsky, B. & Baum, J. Site-specific NMR monitoring of cis–trans isomerization in the folding of the proline-rich collagen triple helix. Biochemistry 39, 4299–4308 (2000).Article 
CAS 
PubMed 

Google Scholar 
Baum, J. & Brodsky, B. Real-time NMR investigations of triple-helix folding and collagen folding diseases. Fold. Des. 2, R53–R60 (1997).Article 
CAS 
PubMed 

Google Scholar 
Tanrikulu, I. C., Westler, W. M., Ellison, A. J., Markley, J. L. & Raines, R. T. Templated collagen “double helices” maintain their structure. J. Am. Chem. Soc. 142, 1137–1141 (2020).Article 
CAS 
PubMed 

Google Scholar 
Tanrikulu, I. C. & Raines, R. T. Optimal interstrand bridges for collagen-like biomaterials. J. Am. Chem. Soc. 136, 13490–13493 (2014).Article 
CAS 
PubMed 

Google Scholar 
Fallas, J. A., Lee, M. A., Jalan, A. A. & Hartgerink, J. D. Rational design of single-composition ABC collagen heterotrimers. J. Am. Chem. Soc. 134, 1430–1433 (2012).Article 
CAS 
PubMed 

Google Scholar 
Zheng, H. et al. How electrostatic networks modulate specificity and stability of collagen. Proc. Natl Acad. Sci. USA 115, 6207–6212 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Walker, D. R. et al. Predicting the stability of homotrimeric and heterotrimeric collagen helices. Nat. Chem. 13, 260–269 (2021).Article 
CAS 
PubMed 

Google Scholar 
Madhan, B., Xiao, J., Thiagarajan, G., Baum, J. & Brodsky, B. NMR monitoring of chain-specific stability in heterotrimeric collagen peptides. J. Am. Chem. Soc. 130, 13520–13521 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Buevich, A. & Baum, J. Nuclear magnetic resonance characterization of peptide models of collagen-folding diseases. Philos. Trans. R. Soc. B 356, 159–168 (2001).Article 
CAS 

Google Scholar 
Saccà, B., Renner, C. & Moroder, L. The chain register in heterotrimeric collagen peptides affects triple helix stability and folding kinetics. J. Mol. Biol. 324, 309–318 (2002).Article 
PubMed 

Google Scholar 
Greenfield, N. J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 1, 2527–2535 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Matagne, A., Radford, S. E. & Dobson, C. M. Fast and slow tracks in lysozyme folding: insight into the role of domains in the folding process. J. Mol. Biol. 267, 1068–1074 (1997).Article 
CAS 
PubMed 

Google Scholar 
Chaffotte, A. F., Guillou, Y. & Goldberg, M. E. Kinetic resolution of peptide bond and side chain far-UV circular dichroism during the folding of hen egg white lysozyme. Biochemistry 31, 9694–9702 (1992).Article 
CAS 
PubMed 

Google Scholar 
Gallivan, J. P. & Dougherty, D. A. Cation-π interactions in structural biology. Proc. Natl Acad. Sci. USA 96, 9459–9464 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Simpson, R. B. & Kauzmann, W. The kinetics of protein denaturation. I. The behavior of the optical rotation of ovalbumin in urea solutions. J. Am. Chem. Soc. 75, 5139–5152 (1953).Article 
CAS 

Google Scholar 
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).Article 
CAS 
PubMed 

Google Scholar 
Usón, I. & Sheldrick, G. M. An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features. Acta Crystallogr. D Struct. Biol. 74, 106–116 (2018).Article 
PubMed 

Google Scholar 
Caballero, I. et al. ARCIMBOLDO on coiled coils. Acta Crystallogr. D Struct. Biol. 74, 194–204 (2018).Article 
CAS 
PubMed 

Google Scholar 
Fallas, J. A., Dong, J., Tao, Y. J. & Hartgerink, J. D. Structural insights into charge pair interactions in triple helical collagen-like proteins. J. Biol. Chem. 287, 8039–8047 (2012).Article 
CAS 
PubMed 

Google Scholar 
Langer, G. G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).Article 
CAS 
PubMed 

Google Scholar 
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Struct. Biol. 66, 486–501 (2010).Article 
CAS 

Google Scholar 
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).Article 
CAS 
PubMed 

Google Scholar 
Yennamalli, R., Arangarasan, R., Bryden, A., Gleicher, M. & Phillips, G. N. Jr. Using a commodity high-definition television for collaborative structural biology. J. Appl. Crystallogr. 47, 1153–1157 (2014).Article 
CAS 
PubMed 

Google Scholar 
Morin, A. et al. Cutting edge: collaboration gets the most out of software. eLife 2, e01456 (2013).Wishart, D. S. et al. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135–140 (1995).Article 
CAS 
PubMed 

Google Scholar 
Misiura, M., Shroff, R., Thyer, R. & Kolomeisky, A. B. DLPacker: deep learning for prediction of amino acid side chain conformations in proteins. Proteins Struct. Funct. Bioinform. 90, 1278–1290 (2022).Article 
CAS 

Google Scholar 
Gauba, V. & Hartgerink, J. D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 129, 2683–2690 (2007).Article 
CAS 
PubMed 

Google Scholar 
Kawahara, K. et al. Polymorphism of collagen triple helix revealed by 19F NMR of model peptide [Pro-4(R)-hydroxyprolyl-Gly]3-[Pro-4(R)-fluoroprolyl-Gly]-[Pro-4(R)-hydroxyprolyl-Gly]3. J. Phys. Chem. B 116, 6908–6915 (2012).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles