Synthesis of ultrahigh-metal-density single-atom catalysts via metal sulfide-mediated atomic trapping

Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).Article 
CAS 
PubMed 

Google Scholar 
Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).Article 
CAS 

Google Scholar 
Muravev, V. et al. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science 380, 1174–1179 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chang, X. et al. Designing single-site alloy catalysts using a degree-of-isolation descriptor. Nat. Nanotechnol. 18, 611–616 (2023).Article 
CAS 
PubMed 

Google Scholar 
Ro, I. et al. Bifunctional hydroformylation on heterogeneous Rh–WOx pair site catalysts. Nature 609, 287–292 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lee, B.-H. et al. Supramolecular tuning of supported metal phthalocyanine catalysts for hydrogen peroxide electrosynthesis. Nat. Catal. 6, 234–243 (2023).Article 
CAS 

Google Scholar 
Xia, C. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021).Article 
CAS 
PubMed 

Google Scholar 
Mehmood, A. et al. High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nat. Catal. 5, 311–323 (2022).Article 
CAS 

Google Scholar 
Zhao, C.-X. et al. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci. Adv. 8, eabn5091 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Iqbal, S., Safdar, B., Hussain, I., Zhang, K. & Chatzichristodoulou, C. Trends and prospects of bulk and single-atom catalysts for the oxygen evolution reaction. Adv. Energy Mater. 13, 2203913 (2023).Article 
CAS 

Google Scholar 
Tang, C. et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–7827 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hai, X. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 17, 174–181 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, S. et al. Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 7, 652–663 (2022).Article 
CAS 

Google Scholar 
Kuai, L. et al. High-areal density single-atoms/metal oxide nanosheets: a micro-gas blasting synthesis and superior catalytic properties. Angew. Chem. Int. Ed. 61, e202212338 (2022).Article 
CAS 

Google Scholar 
Zhao, L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal–nitrogen catalysts. Nat. Commun. 10, 1278 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, C. et al. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 7, 1297–1307 (2021).Article 
CAS 

Google Scholar 
Zhao, J. et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat. Commun. 13, 685 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Han, L. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 21, 681–688 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, J. et al. Direct observation of metal oxide nanoparticles being transformed into metal single atoms with oxygen-coordinated structure and high-loadings. Angew. Chem. Int. Ed. 60, 15248–15253 (2021).Article 
CAS 

Google Scholar 
Chang, J. et al. Oxygen radical coupling on short-range ordered Ru atom arrays enables exceptional activity and stability for acidic water oxidation. J. Am. Chem. Soc. 146, 12958–12968 (2024).Article 
CAS 
PubMed 

Google Scholar 
Lei, X. et al. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain. 6, 816–826 (2023).Article 

Google Scholar 
Wu, Z.-Y. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 22, 100–108 (2023).Article 
CAS 
PubMed 

Google Scholar 
Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).Article 
CAS 
PubMed 

Google Scholar 
Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).Article 
CAS 
PubMed 

Google Scholar 
Qu, Y. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018).Article 
CAS 

Google Scholar 
Han, G.-F. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 17, 403–407 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).Article 
CAS 
PubMed 

Google Scholar 
Li, J. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 58, 18971–18980 (2019).Article 
CAS 

Google Scholar 
Zhao, C. et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 3, 584–594 (2019).Article 
CAS 

Google Scholar 
Yang, Z. et al. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 10, 3734 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Yang, J. et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem. Int. Ed. 57, 14095–14100 (2018).Article 
CAS 

Google Scholar 
Kumar, P. et al. High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 145, 8052–8063 (2023).Article 
CAS 
PubMed 

Google Scholar 
Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).Article 
CAS 

Google Scholar 
Liu, Y. et al. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun. 7, 10921 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chang, J. et al. A C-S-C linkage-triggered ultrahigh nitrogen-doped carbon and the identification of active site in triiodide reduction. Angew. Chem. Int. Ed. 60, 3587–3595 (2021).Article 
CAS 

Google Scholar 
Dai, L. Graphene: tunable superdoping. Nat. Energy 1, 16041 (2016).Article 
CAS 

Google Scholar 
He, X. et al. Building up libraries and production line for single atom catalysts with precursor-atomization strategy. Nat. Commun. 13, 5721 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xie, F. et al. A general approach to 3D-printed single-atom catalysts. Nat. Synth. 2, 129–139 (2023).Article 

Google Scholar 
Wang, B. et al. Room-temperature laser planting of high-loading single-atom catalysts for high-efficiency electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 145, 13788–13795 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zheng, Y., Lin, L., Wang, B. & Wang, X. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 54, 12868–12884 (2015).Article 
CAS 

Google Scholar 
Li, W. et al. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem. Int. Ed. 60, 3290–3298 (2021).Article 
CAS 

Google Scholar 
Song, H. et al. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem. Int. Ed. 60, 7234–7244 (2021).Article 
CAS 

Google Scholar 
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).Article 

Google Scholar 
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).Article 
CAS 

Google Scholar 
Zhang, Y. & Yang, W. Comment on ‘Generalized gradient approximation made simple’. Phys. Rev. Lett. 80, 890–890 (1998).Article 
CAS 

Google Scholar 
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).Article 

Google Scholar 
Qu, Y. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem.Soc. 141, 4505–4509 (2019).Article 
CAS 
PubMed 

Google Scholar 
Yang, H. B. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Ener. 3, 140–147 (2018).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles