First regional reference database of northern Adriatic diatom transcriptomes

Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science 320, 1034–1039. https://doi.org/10.1126/science.1153213 (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Caron, D. A., Countway, P. D., Jones, A. C., Kim, D. Y. & Schnetzer, A. Marine protistan diversity. Ann. Rev. Mar. Sci. 4, 467–493 (2012).Article 
PubMed 

Google Scholar 
De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).Article 
PubMed 

Google Scholar 
Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Falkowski, P. G. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth. Res. 39, 235–258 (1994).Article 
CAS 
PubMed 

Google Scholar 
Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Quéguiner, B. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).Article 
ADS 
CAS 

Google Scholar 
Armbrust, E. V. The life of diatoms in the world’s oceans. Nature 459, 185–192 (2009).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Marić, D. et al. Phytoplankton response to climatic and anthropogenic influences in the north-eastern Adriatic during the last four decades. Estuar. Coast Shelf Sci. 115, 98–112 (2012).Article 
ADS 

Google Scholar 
Timmermans, K. R., Stolte, W. & de Baar, H. J. W. Iron-mediated effects on nitrate reductase in marine phytoplankton. Mar. Biol. 121, 389–396 (1994).Article 
CAS 

Google Scholar 
Greene, R. M., Geider, R. J. & Falkowski, P. G. Effect of iron limitation on photosynthesis in a marine diatom. Limnol. Oceanogr. 36, 1772–1782 (1991).Article 
ADS 
CAS 

Google Scholar 
Milligan, A. J. & Harrison, P. J. Effects of non-steady-state iron limitation on nitrogen assimilatory enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 36, 78–86 (2000).Article 
CAS 

Google Scholar 
Marchetti, A. & Harrison, P. J. Coupled changes in the cell morphology and the elemental (C, N, and Si) composition of the pennate diatom Pseudo-nitzschia due to iron deficiency. Limnol. Oceanogr. 52, 2270–2284 (2007).Article 
ADS 
CAS 

Google Scholar 
Lin, Q. et al. Effects of fundamental nutrient stresses on the lipid accumulation profiles in two diatom species Thalassiosira weissflogii and Chaetoceros muelleri. Bioprocess Biosyst. Eng. 41, 1213–1224 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wang, H. et al. Responses of marine diatom Skeletonema marinoi to nutrient deficiency: Programmed cell death. Appl. Environ. Microbiol. 86, e02460-e2519 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
Lauritano, C., Orefice, I., Procaccini, G., Romano, G. & Ianora, A. Key genes as stress indicators in the ubiquitous diatom Skeletonema marinoi. BMC Genom. 16, 411 (2015).Article 

Google Scholar 
Levitan, O. et al. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proc. Natl. Acad. Sci. USA 112, 412–417 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ivančić, I. et al. Survival mechanisms of phytoplankton in conditions of stratification-induced deprivation of orthophosphate: Northern adriatic case study. Limnol. Oceanogr. 57, 1721–1731 (2012).Article 
ADS 

Google Scholar 
Ivančić, I. et al. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions. Prog. Oceanogr. 146, 175–186 (2016).Article 
ADS 

Google Scholar 
Tanković, M. S. et al. Insights into the life strategy of the common marine diatom Chaetoceros peruvianus Brightwell. PLoS ONE 13, e0203624 (2018).
Google Scholar 
Dyhrman, S. T. et al. The transcriptome and proteome of the diatom thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS ONE 7, e33768 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Total Environ. 678, 499–524 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rimet, F. et al. Diat barcode, an open-access curated barcode library for diatoms. Sci. Rep. 9, 15116 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Vasselon, V., Rimet, F. & Bouchez, A. Rsyst:: Diatom_rbcl_align_312bp Database: A Database Adapted to DNA Metabarcoding (version v7: 23-02-2018). (2018).Niang, G. et al. METdb: A Genomic Reference Database for Marine Species (2020).Groussman, R. D., Blaskowski, S., Coesel, S. N. & Armbrust, E. V. MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Sci. Data 10, 926 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 1979(306), 79–86 (2004).Article 
ADS 

Google Scholar 
Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239–244 (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Lommer, M. et al. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol. 13, 1–21 (2012).Article 

Google Scholar 
Galachyants, Y. P. et al. Sequencing of the complete genome of an araphid pennate diatom Synedra acus subsp. radians from Lake Baikal. Dokl Biochem. Biophys. 461, 84–88 (2015).Article 
CAS 
PubMed 

Google Scholar 
Tanaka, T. et al. Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome. Plant Cell 27, 162–176 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Traller, J. C. et al. Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype. Biotechnol. Biofuels 9, 1–20 (2016).Article 

Google Scholar 
Mock, T. et al. Evolutionary genomics of the cold-Adapted diatom Fragilariopsis cylindrus. Nature 541, 536–540 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ogura, A. et al. Comparative genome and transcriptome analysis of diatom, Skeletonema costatum, reveals evolution of genes for harmful algal bloom. BMC Genom. 19, 1–12 (2018).Article 

Google Scholar 
Osuna-Cruz, C. M. et al. The Seminavis robusta genome provides insights into the evolutionary adaptations of benthic diatoms. Nat. Commun. 11, 3320 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sapriel, G. et al. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS ONE 4, e7458 (2009).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Shrestha, R. P. et al. Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genom. 13, 499 (2012).Article 
CAS 

Google Scholar 
Yang, Z. K. et al. Systems-level analysis of the metabolic responses of the diatom Phaeodactylum tricornutum to phosphorus stress. Environ. Microbiol. 16, 1793–1807 (2014).Article 
CAS 
PubMed 

Google Scholar 
Cruz de Carvalho, M. H., Sun, H. X., Bowler, C. & Chua, N. H. Noncoding and coding transcriptome responses of a marine diatom to phosphate fluctuations. New Phytol. 210, 497–510 (2016).Article 
CAS 
PubMed 

Google Scholar 
Harke, M. J., Juhl, A. R., Haley, S. T., Alexander, H. & Dyhrman, S. T. Conserved transcriptional responses to nutrient stress in bloom-forming algae. Front. Microbiol. 8, 1279 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Amato, A. et al. Grazer-induced transcriptomic and metabolomic response of the chain-forming diatom Skeletonema marinoi. ISME J. 12, 1594–1604 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Harðardóttir, S. et al. Transcriptomic responses to grazing reveal the metabolic pathway leading to the biosynthesis of domoic acid and highlight different defense strategies in diatoms. BMC Mol. Biol. 20, 1–14 (2019).Article 

Google Scholar 
Thangaraj, S. & Sun, J. Transcriptomic reprogramming of the oceanic diatom Skeletonema dohrnii under warming ocean and acidification. Environ. Microbiol. 23, 980–995 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhou, L. et al. Transcriptomic and metabolic signatures of diatom plasticity to light fluctuations. Plant Physiol 190, 2295–2314 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Degobbis, D. & Gilmartin, M. Nitrogen, phosphorus, and biogenic silicon budgets for the northern Adriatic Sea. Oceanol. Acta 13, 31–45 (1990).CAS 

Google Scholar 
Zavatarelli, M., Raicich, F., Bregant, D., Russo, A. & Artegiani, A. Climatological biogeochemical characteristics of the Adriatic Sea. J. Mar. Syst. 18, 227–263 (1998).Article 

Google Scholar 
Zavatarelli, M., Baretta, J. W., Baretta-Bekker, J. G. & Pinardi, N. The dynamics of the Adriatic Sea ecosystem: An idealized model study. Deep Sea Res. Part I(47), 937–970 (2000).Article 

Google Scholar 
Marić Pfannkuchen, D. et al. The ecology of one cosmopolitan, one newly introduced and one occasionally advected species from the Genus Skeletonema in a highly structured ecosystem, the Northern Adriatic. Microb. Ecol. 75, 674–687 (2018).Article 
ADS 
PubMed 

Google Scholar 
Ivančić, I. et al. Alkaline phosphatase activity in relation to nutrient status in the northern Adriatic Sea. Mar. Ecol. Prog. Ser. 378, 27–35 (2009).Article 
ADS 

Google Scholar 
Ivančić, I. et al. Phytoplankton and bacterial alkaline phosphatase activity in the northern Adriatic Sea. Mar. Environ. Res. 69, 85–94 (2010).Article 
PubMed 

Google Scholar 
Ivančić, I., Kraus, R., Najdek, M. & Cozzi, S. Ecological importance of alkaline phosphatase activity in changing marine environmental conditions. Water 13, 2750 (2021).Article 

Google Scholar 
Grilli, F. et al. Seasonal and interannual trends of oceanographic parameters over 40 years in the northern Adriatic Sea in relation to nutrient loadings using the EMODnet chemistry data portal. Water 12, 2280 (2020).Article 
CAS 

Google Scholar 
Su, B. et al. A dataset of global ocean alkaline phosphatase activity. Sci. Data 10, 205 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Giulietti, S., Romagnoli, T., Campanelli, A., Totti, C. & Accoroni, S. Ecology and seasonality of Pseudo-nitzschia species (Bacillariophyceae) in the northwestern Adriatic Sea over a 30-years period (1988–2020). Mediterr. Mar. Sci. 22, 505–520 (2021).Article 

Google Scholar 
Godrijan, J., Marić, D., Tomažić, I., Precali, R. & Pfannkuchen, M. Seasonal phytoplankton dynamics in the coastal waters of the north-eastern Adriatic Sea. J. Sea Res. 77, 32–44 (2013).Article 
ADS 

Google Scholar 
Dermastia, T. T. et al. Ecological time series and integrative taxonomy unveil seasonality and diversity of the toxic diatom Pseudo-nitzschia H. Peragallo in the northern Adriatic Sea. Harmful Algae 93, 101773 (2020).Article 

Google Scholar 
Bernardi Aubry, F., Acri, F., Bastianini, M., Finotto, S. & Pugnetti, A. Differences and similarities in the phytoplankton communities of two coupled transitional and marine ecosystems (the Lagoon of Venice and the Gulf of Venice-Northern Adriatic Sea). Front. Mar. Sci. 9, 974967 (2022).Article 

Google Scholar 
Aubry, F. B., Berton, A., Bastianini, M., Socal, G. & Acri, F. Phytoplankton succession in a coastal area of the NW Adriatic, over a 10-year sampling period (1990–1999). Cont. Shelf Res. 24, 97–115 (2004).Article 
ADS 

Google Scholar 
Cerino, F., Fornasaro, D., Kralj, M., Giani, M. & Cabrini, M. Phytoplankton temporal dynamics in the coastal waters of the north-eastern Adriatic Sea (Mediterranean Sea) from 2010 to 2017. Nat. Conserv. 34, 343–372 (2019).Article 

Google Scholar 
Cabrini, M., Fornasaro, D., Cossarini, G., Lipizer, M. & Virgilio, D. Phytoplankton temporal changes in a coastal northern Adriatic site during the last 25 years. Estuar. Coast Shelf Sci. 115, 113–124 (2012).Article 
ADS 

Google Scholar 
Marić, D. et al. Blooms of the potentially toxic diatom Pseudo-nitzschia calliantha Lundholm, Moestrup & Hasle in coastal waters of the northern Adriatic Sea (Croatia). Estuar Coast Shelf Sci 92, 323–331 (2011).Article 
ADS 

Google Scholar 
Viličić, D., Marasović, I. & Mioković, D. Checklist of phytoplankton in the eastern Adriatic Sea. Acta Bot. Croat. 61, 57–91 (2002).
Google Scholar 
Kužat, N. et al. Morpho-physiological adaptations of Leptocylindrus aporus and L. hargravesii to phosphate limitation in the northern Adriatic. Sci. Rep. 12, 2687 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Schroeder, A. et al. DNA metabarcoding and morphological analysis: Assessment of zooplankton biodiversity in transitional waters. Mar. Environ. Res. 160, 104946 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Lin, Y. et al. Plankton diversity in Anthropocene: Shipping vs. aquaculture along the eastern Adriatic coast assessed through DNA metabarcoding. Sci. Total Environ. 807, 151043 (2022).Article 
CAS 
PubMed 

Google Scholar 
Grižančić, L. et al. A metabarcode based (species) inventory of the northern Adriatic phytoplankton. Biodivers. Data J. 11, 6947 (2023).Article 

Google Scholar 
Guillard, R. R. L. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (eds Smith, W. L. & Chanley, M. H.) 29–60 (Springer US, 1975).Chapter 

Google Scholar 
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 
CAS 
PubMed 

Google Scholar 
Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41 (2018).Article 
CAS 
PubMed 

Google Scholar 
Keller, M. D., Bellows, W. K. & Guillard, R. R. L. Microwave treatment for sterilization of phytoplankton culture media. J. Exp. Mar. Biol. Ecol. 117, 279–283 (1988).Article 

Google Scholar 
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).Article 
CAS 
PubMed 

Google Scholar 
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huerta-Cepas, J. et al. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Consortium, G. O. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261 (2004).Article 

Google Scholar 
Consortium, T. G. O et al. The Gene Ontology knowledgebase in 2023. Genetics 224, iyad031 (2023).Article 

Google Scholar 
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).Article 
CAS 
PubMed 

Google Scholar 
Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded Microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261–D269 (2015).Article 
CAS 
PubMed 

Google Scholar 
Johnson, L. K., Alexander, H. & Brown, C. T. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. Gigascience 8, giy158 (2019).Article 
PubMed 

Google Scholar 
Grbin, D. et al. Multigene phylogeny and morphology of newly isolated strain of Pseudo-nitzschia mannii Amato & Montresor (Adriatic Sea). Diatom Res. 32, 127–131 (2017).Article 
ADS 

Google Scholar 
Tanković, M. S. et al. Experimental evidence for shaping and bloom inducing effects of decapod larvae of Xantho poressa (Olivi, 1792) on marine phytoplankton. J. Mar. Biol. Assoc. U. K 98, 1881–1887 (2018).Article 

Google Scholar 
Martin, P., Van Mooy, B. A. S., Heithoff, A. & Dyhrman, S. T. Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME J. 5, 1057–1060 (2011).Article 
CAS 
PubMed 

Google Scholar 
Abida, H. et al. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol. 167, 118–136 (2015).Article 
CAS 
PubMed 

Google Scholar 
Kemena, T. P., Landolfi, A., Oschlies, A., Wallmann, K. & Dale, A. W. Ocean phosphorus inventory: Large uncertainties in future projections on millennial timescales and their consequences for ocean deoxygenation. Earth Syst. Dyn. 10, 539–553 (2019).Article 
ADS 

Google Scholar 
Randolph-Flagg, N. G. et al. Phosphate availability and implications for life on ocean worlds. Nat. Commun. 14, 2388 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles