Revealing new pathways for the reaction of Criegee intermediate CH2OO with SO2

Long, B., Bao, J. L. & Truhlar, D. G. Atmospheric chemistry of Criegee intermediates: Unimolecular reactions and reactions with water. J. Am. Chem. Soc. 138, 14409–14422 (2016).Article 
CAS 
PubMed 

Google Scholar 
Kidwell, N. M., Li, H., Wang, X., Bowman, J. M. & Lester, M. I. Unimolecular dissociation dynamics of vibrationally activated CH3CHOO Criegee intermediates to OH radical products. Nat. Chem. 8, 509–514 (2016).Article 
CAS 
PubMed 

Google Scholar 
Lin, J. J.-M. & Chao, W. Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods. Chem. Soc. Rev. 46, 7483–7497 (2017).Article 
CAS 

Google Scholar 
Green, A. M., Barber, V. P., Fang, Y., Klippenstein, S. J. & Lester, M. I. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products. Proc. Natl Acad. Sci. USA 114, 12372–12377 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barber, V. P. et al. Four-carbon Criegee intermediate from isoprene ozonolysis: Methyl vinyl ketone oxide synthesis, infrared spectrum, and OH production. J. Am. Chem. Soc. 140, 10866–10880 (2018).Article 
CAS 
PubMed 

Google Scholar 
Long, B., Bao, J. L. & Truhlar, D. G. Unimolecular reaction of acetone oxide and its reaction with water in the atmosphere. Proc. Natl Acad. Sci. USA 115, 6135–6140 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kumar, M. & Francisco, J. S. Elucidating the molecular mechanisms of Criegee-amine chemistry in the gas phase and aqueous surface environments. Chem. Sci. 10, 743–751 (2019).Article 
CAS 

Google Scholar 
Long, B., Bao, J. L. & Truhlar, D. G. Rapid unimolecular reaction of stabilized Criegee intermediates and implications for atmospheric chemistry. Nat. Commun. 10, 2003 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Hansen, A. S. et al. Rapid allylic 1,6 H-atom transfer in an unsaturated criegee intermediate. J. Am. Chem. Soc. 144, 5945–5955 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, B., Kumar, M., Zhou, C., Li, L. & Francisco, J. S. Mechanistic Insights into Criegee intermediate–hydroperoxyl radical chemistry. J. Am. Chem. Soc. 144, 14740–14747 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liang, Q., Zhu, C. & Yang, J. Water charge transfer accelerates Criegee intermediate reaction with H2O–radical anion at the aqueous interface. J. Am. Chem. Soc. 145, 10159–10166 (2023).Article 
CAS 
PubMed 

Google Scholar 
Mauldin, R. L. III et al. A new atmospherically relevant oxidant of sulphur dioxide. Nature 488, 193–196 (2012).Article 
CAS 
PubMed 

Google Scholar 
Percival, C. J. et al. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation. Faraday Discuss 165, 45–73 (2013).Article 
CAS 
PubMed 

Google Scholar 
Stangl, C. M. et al. Sulfur dioxide modifies aerosol particle formation and growth by ozonolysis of monoterpenes and isoprene. J. Geophys. Res. Atmos. 124, 4800–4811 (2019).Article 
CAS 

Google Scholar 
Yang, M., Ma, S. S., Ashraf, H., Pang, S. F. & Zhang, Y. H. The influence of SO2 as the Criegee intermediate scavenger on the heterogeneous oxidation of oleic acid. Atmos. Environ. 231, 117560 (2020).Article 
CAS 

Google Scholar 
Lin, Y. H., Yin, C., Takahashi, K. & Lin, J. J.-M. Surprisingly long lifetime of methacrolein oxide, an isoprene derived Criegee intermediate, under humid conditions. Commun. Chem. 4, 12 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, L., Tsona, N. T. & Du, L. Relative humidity changes the role of SO2 in biogenic secondary organic aerosol formation. J. Phys. Chem. Lett. 12, 7365–7372 (2021).Article 
CAS 
PubMed 

Google Scholar 
Caravan, R. L. et al. Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate. Proc. Natl Acad. Sci. USA 117, 9733–9740 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Welz, O. et al. Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2. Science 335, 204–207 (2012).Article 
CAS 
PubMed 

Google Scholar 
Sheps, L. Absolute ultraviolet absorption spectrum of a Criegee intermediate CH2OO. J. Phys. Chem. Lett. 4, 4201–4205 (2013).Article 
CAS 
PubMed 

Google Scholar 
Stone, D., Blitz, M., Daubney, L., Howes, N. U. & Seakins, P. Kinetics of CH2OO reactions with SO2, NO2, NO, H2O and CH3CHO as a function of pressure. Phys. Chem. Chem. Phys. 16, 1139–1149 (2014).Article 
CAS 
PubMed 

Google Scholar 
Liu, Y., Bayes, K. D. & Sander, S. P. Measuring rate constants for reactions of the simplest Criegee intermediate (CH2OO) by monitoring the OH radical. J. Phys. Chem. A 118, 741–747 (2014).Article 
CAS 
PubMed 

Google Scholar 
Chhantyal-Pun, R., Davey, A., Shallcross, D. E., Percival, C. J. & Orr-Ewing, A. J. A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy. Phys. Chem. Chem. Phys. 17, 3617–3626 (2015).Article 
CAS 
PubMed 

Google Scholar 
Huang, H. L., Chao, W. & Lin, J. J.-M. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2. Proc. Natl Acad. Sci. USA 112, 10857–10862 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Y. et al. A kinetic study of the CH2OO Criegee intermediate reaction with SO2, (H2O)2, CH2I2 and I atoms using OH laser induced fluorescence. Phys. Chem. Chem. Phys. 19, 20786–20794 (2017).Article 
CAS 
PubMed 

Google Scholar 
Howes, N. U. M. et al. Kinetic studies of C1 and C2 Criegee intermediates with SO2 using laser flash photolysis coupled with photoionization mass spectrometry and time resolved UV absorption spectroscopy. Phys. Chem. Chem. Phys. 20, 22218–22227 (2018).Article 
CAS 
PubMed 

Google Scholar 
Qiu, J. & Tonokura, K. Detection of the simplest Criegee intermediate CH2OO in the ν4 band using a continuous wave quantum cascade laser and its kinetics with SO2 and NO2. Chem. Phys. Lett. 737, 100019 (2019).Article 

Google Scholar 
Onel, L. et al. Kinetics of the gas phase reaction of the Criegee intermediate CH2OO with SO2 as a function of temperature. Phys. Chem. Chem. Phys. 23, 19415–19423 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jiang, L., Xu, Y. S. & Ding, A. Z. Reaction of stabilized Criegee intermediates from ozonolysis of limonene with sulfur dioxide: ab initio and DFT study. J. Phys. Chem. A 114, 12452–12461 (2010).Article 
CAS 
PubMed 

Google Scholar 
Kurtén, T., Lane, J. R., Jørgensen, S. & Kjaergaard, H. G. A computational study of the oxidation of SO2 to SO3 by gas-phase organic oxidants. J. Phys. Chem. A 115, 8669–8681 (2011).Article 
PubMed 

Google Scholar 
Vereecken, L., Harder, H. & Novelli, A. The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere. Phys. Chem. Chem. Phys. 14, 14682–14695 (2012).Article 
CAS 
PubMed 

Google Scholar 
Kuwata, K. T. et al. A computational re-examination of the Criegee intermediate–sulfur dioxide reaction. J. Phys. Chem. A 119, 10316–10335 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zhao, H., Wang, S., Lu, C., Tang, Y. & Guan, J. Theoretical investigations on the reactions of criegee intermediates with SO2 to form SO3. J. Phys. Org. Chem. 35, e4394 (2022).Article 
CAS 

Google Scholar 
Manonmani, G., Sandhiya, L. & Senthilkumar, K. Reaction of Criegee intermediates with SO2─a possible route for sulfurous acid formation in the atmosphere. ACS Earth Space Chem. 7, 1890–1904 (2023).Article 
CAS 

Google Scholar 
Aplincourt, P. & Ruiz-López, M. F. Theoretical investigation of reaction mechanisms for carboxylic acid formation in the atmosphere. J. Am. Chem. Soc. 122, 8990–8997 (2000).Article 
CAS 

Google Scholar 
Hatakeyama, S., Kobayashi, H., Lin, Z. Y., Takagi, H. & Akimoto, H. Mechanism for the reaction of CH2OO with SO2. J. Phys. Chem. 90, 4131–4135 (1986).Article 
CAS 

Google Scholar 
Wang, Y. Y., Dash, M. R., Chung, C. Y. & Lee, Y. P. Detection of transient infrared absorption of SO3 and 1,3,2-dioxathietane-2,2-dioxide [cyc-(CH2)O(SO2)O] in the reaction CH2OO + SO2. J. Chem. Phys. 148, 064301 (2018).Cremer, D., Kraka, E. & Szalay, P. G. Decomposition modes of dioxirane, methyldioxirane and dimethyldioxirane—A CCSD (T), MR-AQCC and DFT investigation. Chem. Phys. Lett. 292, 97–109 (1998).Article 
CAS 

Google Scholar 
Győri, T. & Czakó, G. Automating the development of high-dimensional reactive potential energy surfaces with the ROBOSURFER program system. J. Chem. Theory Comput. 16, 51–66 (2020).Article 
PubMed 

Google Scholar 
Møller, C. & Plesset, M. S. Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618 (1934).Article 

Google Scholar 
Dunning, T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).Article 
CAS 

Google Scholar 
Werner, H.-J. et al. Molpro, version 2015.1, a package of ab initio programs, see http://www.molpro.netYin, C. & Takahashi, K. How does substitution affect the unimolecular reaction rates of Criegee intermediates? Phys. Chem. Chem. Phys. 19, 12075–12084 (2017).Article 
CAS 
PubMed 

Google Scholar 
Vereecken, L. & Francisco, J. S. Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chem. Soc. Rev. 41, 6259–6293 (2012).Article 
CAS 
PubMed 

Google Scholar 
Anglada, J. M., Olivella, S. & Sole, A. The reaction of formaldehyde carbonyl oxide with the methyl peroxy radical and its relevance in the chemistry of the atmosphere. Phys. Chem. Chem. Phys. 15, 18921–18933 (2013).Article 
CAS 
PubMed 

Google Scholar 
Xie, Z. & Bowman, J. M. Permutationally invariant polynomial basis for molecular energy surface fitting via monomial symmetrization. J. Chem. Theory Comput. 6, 26–34 (2010).Article 
CAS 
PubMed 

Google Scholar 
Yin, C. & Czakó, G. Full-dimensional automated potential energy surface development and detailed dynamics for the CH2OO + NH3 reaction. Phys. Chem. Chem. Phys. 25, 26917–26922 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yin, C., Tajti, V. & Czakó, G. Full-dimensional potential energy surface development and dynamics for the HBr + C2H5 → Br(2P3/2) + C2H6 reaction. Phys. Chem. Chem. Phys. 24, 24784–24792 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yin, C. & Czakó, G. Automated full-dimensional potential energy surface development and quasi-classical dynamics for the HI (X1Σ+) + C2H5 → I(2P3/2) + C2H6 reaction. Phys. Chem. Chem. Phys. 24, 29084–29091 (2022).Article 
CAS 
PubMed 

Google Scholar 
Hase, W. L. Encyclopedia of Computational Chemistry, Wiley, New York, 399–407 (1998).Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. https://atct.anl.gov/Thermochemical%20Data/version%201.130/index.php (Argonne National Laboratory, Lemont, Illinois. 2023).

Hot Topics

Related Articles