Microwave-assisted synthesis of ZnS@CuInxSy for photocatalytic degradation of coloured and non-coloured pollutants

Singh, S., Gupta, H., Dhiman, S. & Sahu, N. K. Decontamination of cationic dye brilliant green from the aqueous media. Appl. Water Sci. 12(4), 61. https://doi.org/10.1007/s13201-022-01596-5 (2022).Article 
ADS 
CAS 

Google Scholar 
Li, Q., Qiao, X.-Q., Jia, Y., Hou, D. & Li, D.-S. Amorphous CoMoS4 nanostructure for photocatalytic H2 generation, nitrophenol reduction, and methylene blue adsorption. ACS Appl. Nano Mater. 3(1), 68–76. https://doi.org/10.1021/acsanm.9b01582 (2020).Article 
CAS 

Google Scholar 
Pillai, S. B. Adsorption in Water and Used Water Purification. In Handbook of Water and Used Water Purification 1–22 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-319-66382-1_4-1.Chapter 

Google Scholar 
Khan, M. M. Chalcogenide-Based Nanomaterials as Photocatalysts (Elsevier, 2021). https://doi.org/10.1016/C2019-0-01819-5.Book 

Google Scholar 
Khan, M. M. Principles and Mechanisms of Photocatalysis. In Photocatalytic Systems by Design 1–22 (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-820532-7.00008-4.Chapter 

Google Scholar 
Khan, M. M. Theoretical Concepts of Photocatalysis (Elsevier, 2023). https://doi.org/10.1016/C2021-0-01798-3.Book 

Google Scholar 
Rahman, A. & Khan, M. M. Chalcogenides as photocatalysts. New J. Chem. 45, 19622–19635. https://doi.org/10.1039/d1nj04346c (2021).Article 
CAS 

Google Scholar 
Khan, M. M., Pradhan, D. & Sohn, Y. Nanocomposites for Visible Light-Induced Photocatalysis. In Springer Series on Polymer and Composite Materials (eds Khan, M. M. et al.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-62446-4.Chapter 

Google Scholar 
Rahman, A., Jennings, J. R. & Khan, M. M. CuInS2 and CuInS2-based nanostructures as photocatalysts. Mater. Sci. Semicond. Process. 169, 107930. https://doi.org/10.1016/j.mssp.2023.107930 (2024).Article 
CAS 

Google Scholar 
Cai, Q., Liu, Z., Han, C., Tong, Z. & Ma, C. CuInS2/Sb2S3 heterostructure modified with noble metal co-catalyst for efficient photoelectrochemical water splitting. J. Alloys Compd. 795, 319–326. https://doi.org/10.1016/j.jallcom.2019.04.312 (2019).Article 
CAS 

Google Scholar 
Khan, M. M. & Rahman, A. Chalcogenides and chalcogenide-based heterostructures as photocatalysts for water splitting. Catalysts 12(11), 1338. https://doi.org/10.3390/catal12111338 (2022).Article 
CAS 

Google Scholar 
Kang, S.-Z., Yang, Y.-K., Bu, W. & Mu, J. TiO2 nanoparticles incorporated with CuInS2 clusters: Preparation and photocatalytic activity for degradation of 4-nitrophenol. J. Solid State Chem. 182(11), 2972–2976. https://doi.org/10.1016/j.jssc.2009.08.014 (2009).Article 
ADS 
CAS 

Google Scholar 
Toyodome, T., Amao, Y. & Higashi, M. Photoelectrochemical reduction of CO2 to formate over a hybrid system of CuInS2 photocathode and formate dehydrogenase under visible-light irradiation. New J. Chem. 45(32), 14803–14807. https://doi.org/10.1039/D1NJ02481G (2021).Article 
CAS 

Google Scholar 
Deng, F. et al. Novel visible-light-driven direct Z-scheme CdS/CuInS2 nanoplates for excellent photocatalytic degradation performance and highly-efficient Cr(VI) reduction. Chem. Eng. J. 361, 1451–1461. https://doi.org/10.1016/j.cej.2018.10.176 (2019).Article 
CAS 

Google Scholar 
Perner, V. et al. Hot injection synthesis of CuInS2 nanocrystals using metal xanthates and their application in hybrid solar cells. New J. Chem. 43(1), 356–363. https://doi.org/10.1039/C8NJ04823A (2019).Article 
CAS 

Google Scholar 
Raja, A., Son, N., Swaminathan, M. & Kang, M. Facile synthesis of sphere-like structured ZnIn2S4-RGO-CuInS2 ternary heterojunction catalyst for efficient visible-active photocatalytic hydrogen evolution. J. Colloid Interface Sci. 602, 669–679. https://doi.org/10.1016/j.jcis.2021.06.034 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Huang, W.-C. et al. Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application. Langmuir 28(22), 8496–8501. https://doi.org/10.1021/la300742p (2012).Article 
CAS 
PubMed 

Google Scholar 
Chumha, N. et al. Photocatalytic activity of CuInS2 nanoparticles synthesized via a simple and rapid microwave heating process. Mater. Res. Express 7(1), 015074. https://doi.org/10.1088/2053-1591/ab6885 (2020).Article 
ADS 
CAS 

Google Scholar 
Amiri, O. et al. A new sonochemical method for preparation of different morphologies of CuInS2 nanostructures. Bull. Mater. Sci. 37(5), 1079–1085. https://doi.org/10.1007/s12034-014-0047-9 (2014).Article 
CAS 

Google Scholar 
Mingos, D. M. P. & Baghurst, D. R. Tilden lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev. 20(1), 1–47. https://doi.org/10.1039/cs9912000001 (1991).Article 
CAS 

Google Scholar 
Krishnan, R. et al. Recent advances in microwave synthesis for photoluminescence and photocatalysis. Mater. Today Commun. 32, 103890. https://doi.org/10.1016/j.mtcomm.2022.103890 (2022).Article 
CAS 

Google Scholar 
Mange, Y. J., Dewi, M. R., Macdonald, T. J., Skinner, W. M. & Nann, T. Rapid microwave assisted synthesis of nearly monodisperse aqueous CuInS2/ZnS nanocrystals. CrystEngComm 17(41), 7820–7823. https://doi.org/10.1039/C5CE01325A (2015).Article 
CAS 

Google Scholar 
Hosseinpour-Mashkani, S. M., Salavati-Niasari, M., Mohandes, F. & Venkateswara-Rao, K. CuInS2 nanoparticles: Microwave-assisted synthesis, characterization, and photovoltaic measurements. Mater. Sci. Semicond. Process. 16(2), 390–402. https://doi.org/10.1016/j.mssp.2012.09.005 (2013).Article 
CAS 

Google Scholar 
Jiang, F. et al. Visible light photocatalytic H2-production activity of epitaxial Cu2ZnSnS4/ZnS heterojunction. Catal. Commun. 85, 39–43. https://doi.org/10.1016/j.catcom.2016.07.017 (2016).Article 
CAS 

Google Scholar 
Rahman, A., Jennings, J. R., Tan, A. L. & Khan, M. M. Molybdenum disulfide-based nanomaterials for visible-light-induced photocatalysis. ACS Omega 7(6), 22089–22110. https://doi.org/10.1021/acsomega.2c01314 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Amaranatha Reddy, D., Ma, R., Choi, M. Y. & Kim, T. K. Reduced graphene oxide wrapped ZnS–Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants. Appl. Surf. Sci. 324, 725–735. https://doi.org/10.1016/j.apsusc.2014.11.026 (2015).Article 
ADS 
CAS 

Google Scholar 
Zhang, Y. et al. Facile preparation of high-performance hydrochar/TiO2 heterojunction visible light photocatalyst for treating Cr(VI)-polluted water. Colloids Surf. A Physicochem. Eng. Asp. 681, 132775. https://doi.org/10.1016/j.colsurfa.2023.132775 (2024).Article 
CAS 

Google Scholar 
Rahman, A., Khan, F., Jennings, J. R., Kim, Y.-M. & Khan, M. M. CdS@CuInS2 nanocomposites for enhanced photocatalytic activity under visible light irradiation. Mater. Sci. Semicond. Process. 177, 108365. https://doi.org/10.1016/j.mssp.2024.108365 (2024).Article 
CAS 

Google Scholar 
Yan, L., Li, Z., Sun, M., Shen, G. & Li, L. Stable and flexible CuInS2/ZnS:Al-TiO2 film for solar-light-driven photodegradation of soil fumigant. ACS Appl. Mater. Interfaces 8(31), 20048–20056. https://doi.org/10.1021/acsami.6b05587 (2016).Article 
CAS 
PubMed 

Google Scholar 
Dai, Y.-W. et al. Au@SiO2@CuInS2–ZnS/Anti-AFP fluorescent probe improves HCC cell labeling. Hepatobiliary Pancreat. Dis. Int. 18(3), 266–272. https://doi.org/10.1016/j.hbpd.2019.03.001 (2019).Article 
CAS 
PubMed 

Google Scholar 
Tsuji, I., Kato, H. & Kudo, A. Photocatalytic hydrogen evolution on ZnS−CuInS2−AgInS2 solid solution photocatalysts with wide visible light absorption bands. Chem. Mater. 18(7), 1969–1975. https://doi.org/10.1021/cm0527017 (2006).Article 
CAS 

Google Scholar 
Cui, Q., Gu, X., Zhao, Y., Qi, K. & Yan, Y. S-scheme CuInS3/ZnS heterojunctions for the visible light-driven photocatalytic degradation of tetracycline antibiotic drugs. J. Taiwan Inst. Chem. Eng. 142, 104679. https://doi.org/10.1016/j.jtice.2023.104679 (2023).Article 
CAS 

Google Scholar 
Sandroni, M. et al. Cadmium-free CuInS2/ZnS quantum dots as efficient and robust photosensitizers in combination with a molecular catalyst for visible light-driven H2 production in water. Energy Environ. Sci. 11(7), 1752–1761. https://doi.org/10.1039/C8EE00120K (2018).Article 
CAS 

Google Scholar 
Ren, Y.-Y., Xia, W., Deng, B.-Y., Liu, J. & Wang, F. Host-guest assemblies of anchoring molecular catalysts of CO2 reduction onto CuInS2/ZnS quantum dots for robust photocatalytic syngas production in water. Mol. Catal. 520, 112168. https://doi.org/10.1016/j.mcat.2022.112168 (2022).Article 
CAS 

Google Scholar 
Kong, L., Li, Z., Huang, S., Jia, J. & Li, L. Boosting photocatalytic performance and stability of CuInS2/ZnS–TiO2 heterostructures via sol-gel processed integrate amorphous titania gel. Appl. Catal. B 204, 403–410. https://doi.org/10.1016/j.apcatb.2016.11.055 (2017).Article 
CAS 

Google Scholar 
Mohamed, N. B. H. et al. Statistical physics analysis of adsorption isotherms and photocatalysis activity of MPA coated CuInS2/ZnS nanocrystals for the removal of methyl blue from wastewaters. Inorg. Chem. Commun. 144, 109933. https://doi.org/10.1016/j.inoche.2022.109933 (2022).Article 
CAS 

Google Scholar 
Zhang, Z. et al. CuInS2/ZnS/TGA nanocomposite photocatalysts: Synthesis characterization and photocatalytic activity. Catal. Lett. 147(7), 1631–1639. https://doi.org/10.1007/s10562-017-2067-8 (2017).Article 
CAS 

Google Scholar 
Zhao, Y., Zhang, Y., Zhu, H., Hadjipanayis, G. C. & Xiao, J. Q. Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals. J. Am. Chem. Soc. 126(22), 6874–6875. https://doi.org/10.1021/ja048650g (2004).Article 
CAS 
PubMed 

Google Scholar 
Li, R. et al. Development of a fluorometric and colorimetric dual-mode sensing platform for acid phosphatase assay based on Fe3+functionalized CuInS2/ZnS quantum dots. Anal. Chim. Acta https://doi.org/10.1016/j.aca.2023.342121 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Xie, X. et al. Synthesis of a Cu2-xSe/g-C3N4 heterojunction photocatalyst for efficient photocatalytic H2 evolution. Colloids Surf. A Physicochem. Eng. Asp. 635, 128103. https://doi.org/10.1016/j.colsurfa.2021.128103 (2022).Article 
CAS 

Google Scholar 
Chetty, S. S., Praneetha, S., Vadivel Murugan, A., Govarthanan, K. & Verma, R. S. Microwave-assisted synthesis of quasi-pyramidal CuInS2–ZnS nanocrystals for enhanced near-infrared targeted fluorescent imaging of subcutaneous melanoma. Adv. Biosyst. 3(1), 1800127. https://doi.org/10.1002/adbi.201800127 (2019).Article 
CAS 

Google Scholar 
Hemathangam, S., Thanapathy, G. & Muthukumaran, S. Tuning of band gap and photoluminescence properties of Zn doped Cu2S thin films by CBD method. J. Mater. Sci. Mater. Electron. 27(2), 2042–2048. https://doi.org/10.1007/s10854-015-3989-9 (2016).Article 
CAS 

Google Scholar 
Timoumi, A. et al. Impact of thermal annealing inducing oxidation process on the crystalline powder of In2S3. J. Mater. Sci. Mater. Electron. 31(16), 13636–13645. https://doi.org/10.1007/s10854-020-03921-7 (2020).Article 
CAS 

Google Scholar 
Fakhri, H., Mahjoub, A. R. & Khavar, A. H. C. Synthesis and characterization of ZnO/CuInS2 nanocomposite and investigation of their photocatalytic properties under visible light irradiation. Appl. Surf. Sci. 318, 65–73. https://doi.org/10.1016/j.apsusc.2014.01.024 (2014).Article 
ADS 
CAS 

Google Scholar 
Mousavi-Kamazani, M., Salavati-Niasari, M. & Emadi, H. Synthesis and characterization of CuInS2 nanostructure by ultrasonic-assisted method and different precursors. Mater. Res. Bull. 47(12), 3983–3990. https://doi.org/10.1016/j.materresbull.2012.08.044 (2012).Article 
CAS 

Google Scholar 
Besra, S. et al. Facile synthesis and characterization of ZnO:Al/ZnS/NiO heterojunction thin films with enhanced photocatalytic activities. Solid State Sci. 143, 107282. https://doi.org/10.1016/j.solidstatesciences.2023.107282 (2023).Article 
CAS 

Google Scholar 
Zafar, S. et al. Effect of Fe doping on the structural and optical properties of ZnS macro-spheres. Optik (Stuttg) 262, 169342. https://doi.org/10.1016/j.ijleo.2022.169342 (2022).Article 
CAS 

Google Scholar 
Faryal, S. et al. Thiourea-capped nanoapatites amplify osmotic stress tolerance in Zea mays L. by conserving photosynthetic pigments, osmolytes biosynthesis and antioxidant biosystems. Molecules 27(18), 5744. https://doi.org/10.3390/molecules27185744 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yue, W. et al. l-cysteine assisted-synthesis of 3D In2S3 for 3D CuInS2 and its application in hybrid solar cells. RSC Adv. 7(60), 37578–37587. https://doi.org/10.1039/C7RA05730J (2017).Article 
ADS 
CAS 

Google Scholar 
Rajaram, R. et al. Amperometric determination of Myo-inositol using a glassy carbon electrode modified with nanostructured copper sulfide. Microchim. Acta 187(6), 334. https://doi.org/10.1007/s00604-020-04300-z (2020).Article 
CAS 

Google Scholar 
Zhang, L. et al. Annealing effects on CuInS2 thin films grown on glass substrates by using pulsed laser deposition. J. Korean Phys. Soc. 64(3), 410–414. https://doi.org/10.3938/jkps.64.410 (2014).Article 
ADS 
CAS 

Google Scholar 
Michalec, K. & Kusior, A. From adsorbent to photocatalyst: The sensitization effect of SnO2 surface towards dye photodecomposition. Molecules 26(23), 7123. https://doi.org/10.3390/molecules26237123 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, J. et al. Synthesis of an Ag@AgCl catalyst with amorphous copper as the support and its catalytic performance in the reduction of 4-nitrophenol. J. Chem. Res. 45(5–6), 551–557. https://doi.org/10.1177/1747519820942018 (2021).Article 
CAS 

Google Scholar 
Isac, L. & Enesca, A. Recent developments in ZnS-based nanostructures photocatalysts for wastewater treatment. Int. J. Mol. Sci. 23(24), 15668. https://doi.org/10.3390/ijms232415668 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wilke, T., Schneider, M. & Kleinermanns, K. 1,4-hydroquinone is a hydrogen reservoir for fuel cells and recyclable via photocatalytic water splitting. Open J. Phys. Chem. 03(02), 97–102. https://doi.org/10.4236/ojpc.2013.32012 (2013).Article 
CAS 

Google Scholar 
Pintar, A. & Levec, J. Catalytic oxidation of aqueous p-chlorophenol and p-nitrophenol solutions. Chem. Eng. Sci. 49(24), 4391–4407. https://doi.org/10.1016/S0009-2509(05)80029-6 (1994).Article 
CAS 

Google Scholar 
Bhagavan, N. V. Water, Acids, Bases, and Buffers. In Medical Biochemistry 1–16 (Elsevier, 2002). https://doi.org/10.1016/B978-012095440-7/50003-2.Chapter 

Google Scholar 

Hot Topics

Related Articles