A high-performance triboelectric nanogenerator with dual nanostructure for remote control of switching circuit

Preparing nanostructured surfaces has been considered an effective method to improve the output of triboelectric nanogenerators (TENGs), but how to quickly prepare materials with a nanostructured surface for TENGs has always been a challenge. Here, polypropylene nanowires and electrospun nylon 11 nanofibers were successfully prepared through a simple and time-saving method with a high success rate. Compared with a flat TENG, the output performance of a dual nanostructured TENG is enhanced by more than 5 times. After 1H,1H,2H,2H-perfluorooctyl trichlorosilane was assembled on the surface of the polypropylene film, the dual nanostructured TENG achieved the maximum output with the short-circuit current, output voltage, and charge density of 63.3 μA, 1135 V and 161.5 μC m−2, respectively. Compared with a planar structured TENG, the short-circuit current and output voltage were enhanced by about 18 times, and the charge density was increased by about 36 times. In addition, the TENG showed good working stability with almost no decrease in output after continuous operation for 193 000 cycles. The electricity generated by this TENG can successfully light up 1280 LEDs and continuously power a multi-functional electronic watch. Finally, the triboelectric signal generated by this TENG was used to control an optocoupler switch, indicating good application prospects in a remote control switching circuit.

Hot Topics

Related Articles