Remote site-selective arene C–H functionalization enabled by N-heterocyclic carbene organocatalysis

Lam, N. Y. S., Wu, K. & Yu, J.-Q. Advancing the logic of chemical synthesis: C–H activation as strategic and tactical disconnections for C–C bond construction. Angew. Chem. Int. Ed. 60, 15767–15790 (2021).Article 
CAS 

Google Scholar 
Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Z., Tanaka, K. & Yu, J.-Q. Remote site-selective C–H activation directed by a catalytic bifunctional template. Nature 543, 538–542 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roy, S., Panja, S., Sahoo, S. R., Chatterjee, S. & Maiti, D. Enroute sustainability: metal free C–H bond functionalisation. Chem. Soc. Rev. 52, 2391–2479 (2023).Article 
CAS 
PubMed 

Google Scholar 
Rogge, T. et al. C–H activation. Nat. Rev. Methods Prim. 1, 43 (2021).Article 
CAS 

Google Scholar 
Maiti, D. Handbook of CH-Functionalization (Wiley, 2022).Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).Article 
CAS 
PubMed 

Google Scholar 
Lucas, E. L. et al. Palladium-catalyzed enantioselective β-C(sp3)–H activation reactions of aliphatic acids: a retrosynthetic surrogate for enolate alkylation and conjugate addition. Acc. Chem. Res. 55, 537–550 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sinha, S. K. et al. Toolbox for distal C–H bond functionalizations in organic molecules. Chem. Rev. 122, 5682–5841 (2022).Article 
CAS 
PubMed 

Google Scholar 
Maiti, D. & Guin, S. Remote C–H Bond Functionalizations: Methods and Strategies in Organic Synthesis. (Wiley, 2021).Fan, Z. et al. Molecular editing of aza-arene C–H bonds by distance, geometry and chirality. Nature 610, 87–93 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lam, N. Y. S. et al. Empirical guidelines for the development of remote directing templates through quantitative and experimental analyses. J. Am. Chem. Soc. 144, 2793–2803 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, J.-J. et al. Atroposelective remote meta-C–H activation. Chem 9, 1452–1463 (2023).Article 
CAS 

Google Scholar 
Leitch, J. A. & Frost, C. G. Ruthenium-catalysed σ-activation for remote meta-selective C–H functionalisation. Chem. Soc. Rev. 46, 7145–7153 (2017).Article 
CAS 
PubMed 

Google Scholar 
Hofmann, N. & Ackermann, L. meta-Selective C–H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013).Article 
CAS 
PubMed 

Google Scholar 
Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nobile, E., Castanheiro, T. & Besset, T. Radical-promoted distal C–H functionalization of C(sp3) centers with fluorinated moieties. Angew. Chem. Int. Ed. 60, 12170–12191 (2021).Article 
CAS 

Google Scholar 
Nechab, M., Mondal, S. & Bertrand, M. P. 1,n-Hydrogen-atom transfer (HAT) reactions in which n ≠ 5: an updated inventory. Chem. Eur. J. 20, 16034–16059 (2014).Article 
CAS 
PubMed 

Google Scholar 
Guo, W., Wang, Q. & Zhu, J. Visible light photoredox-catalysed remote C–H functionalisation enabled by 1,5-hydrogen atom transfer (1,5-HAT). Chem. Soc. Rev. 50, 7359–7377 (2021).Article 
CAS 
PubMed 

Google Scholar 
Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chu, J. C. K. & Rovis, T. Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds. Nature 539, 272–275 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).Article 
CAS 

Google Scholar 
Allen, A. R., Noten, E. A. & Stephenson, C. R. J. Aryl transfer strategies mediated by photoinduced electron transfer. Chem. Rev. 122, 2695–2751 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, W., Xu, W., Xie, J., Yu, S. & Zhu, C. Distal radical migration strategy: an emerging synthetic means. Chem. Soc. Rev. 47, 654–667 (2018).Article 
CAS 
PubMed 

Google Scholar 
Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).Article 
CAS 

Google Scholar 
Smith B. M. & March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (Wiley-Interscience, 2007).Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meng, G. et al. Achieving site-selectivity for C–H activation processes based on distance and geometry: a carpenter’s approach. J. Am. Chem. Soc. 142, 10571–10591 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tang, R.-Y., Li, G. & Yu, J.-Q. Conformation-induced remote meta-C–H activation of amines. Nature 507, 215–220 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wan, L., Dastbaravardeh, N., Li, G. & Yu, J.-Q. Cross-coupling of remote meta-C–H bonds directed by a U-shaped template. J. Am. Chem. Soc. 135, 18056–18059 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, G. et al. Pd(II)-catalyzed meta-C–H olefination, arylation, and acetoxylation of indolines using a U-shaped template. J. Am. Chem. Soc. 136, 10807–10813 (2014).Article 
CAS 
PubMed 

Google Scholar 
Li, M. et al. Remote para-C–H acetoxylation of electron-deficient arenes. Org. Lett. 21, 540–544 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chang, W. et al. Computationally designed ligands enable tunable borylation of remote C–H bonds in arenes. Chem 8, 1775–1788 (2022).Article 
CAS 

Google Scholar 
Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).Article 
CAS 
PubMed 

Google Scholar 
Liu, K., Schwenzer, M. & Studer, A. Radical NHC catalysis. ACS Catal. 12, 11984–11999 (2022).Article 
CAS 

Google Scholar 
Dai, L. & Ye, S. Recent advances in N-heterocyclic carbene-catalyzed radical reactions. Chin. Chem. Lett. 32, 660–667 (2021).Article 
CAS 

Google Scholar 
Ishii, T., Nagao, K. & Ohmiya, H. Recent advances in N-heterocyclic carbene-based radical catalysis. Chem. Sci. 11, 5630–5636 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, Q.-Z., Zeng, R., Han, B. & Li, J.-L. Single-electron transfer reactions enabled by N-heterocyclic carbene organocatalysis. Chem. Eur. J. 27, 3238–3250 (2021).Article 
CAS 
PubMed 

Google Scholar 
Song, R. & Chi, Y. R. N-heterocyclic carbene catalyzed radical coupling of aldehydes with redox-active esters. Angew. Chem. Int. Ed. 58, 8628–8630 (2019).Article 
CAS 

Google Scholar 
Ishii, T., Kakeno, Y., Nagao, K. & Ohmiya, H. N-heterocyclic carbene-catalyzed decarboxylative alkylation of aldehydes. J. Am. Chem. Soc. 141, 3854–3858 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ishii, T., Ota, K., Nagao, K. & Ohmiya, H. N-heterocyclic carbene-catalyzed radical relay enabling vicinal alkylacylation of alkenes. J. Am. Chem. Soc. 141, 14073–14077 (2019).Article 
CAS 
PubMed 

Google Scholar 
Meng, Q.-Y., Lezius, L. & Studer, A. Benzylic C–H acylation by cooperative NHC and photoredox catalysis. Nat. Commun. 12, 2068 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Matsuki, Y. et al. Aryl radical-mediated N-heterocyclic carbene catalysis. Nat. Commun. 12, 3848 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bay, A. V., Fitzpatrick, K. P., Betori, R. C. & Scheidt, K. A. Combined photoredox and carbene catalysis for the synthesis of ketones from carboxylic acids. Angew. Chem. Int. Ed. 59, 9143–9148 (2020).Article 
CAS 

Google Scholar 
Li, J. L. et al. Radical acylfluoroalkylation of olefins through N-heterocyclic carbene organocatalysis. Angew. Chem. Int. Ed. 59, 1863–1870 (2020).Article 
CAS 

Google Scholar 
Goto, Y., Sano, M., Sumida, Y. & Ohmiya, H. N-heterocyclic carbene- and organic photoredox-catalysed meta-selective acylation of electron-rich arenes. Nat. Synth. 2, 1037–1045 (2023).Article 

Google Scholar 
Pitzer, L., Schäfers, F. & Glorius, F. Rapid assessment of the reaction-condition-based sensitivity of chemical transformations. Angew. Chem. Int. Ed. 58, 8572–8576 (2019).Article 
CAS 

Google Scholar 
Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).Article 
CAS 
PubMed 

Google Scholar 
Börgel, J. & Ritter, T. Late-stage functionalization. Chem 6, 1877–1887 (2020).Article 

Google Scholar 
Wang, W., Lorion, M. M., Shah, J., Kapdi, A. R. & Ackermann, L. Late-stage peptide diversification by position-selective C–H activation. Angew. Chem. Int. Ed. 57, 14700–14717 (2018).Article 
CAS 

Google Scholar 
Yuan, Z., Zhu, C., Zhang, Y. & Rao, Y. Post-modification of amino acids and peptides for the rapid synthesis of C-glycoamino acids and C-glycopeptides. Eur. J. Org. Chem. 2022, e202201036 (2022).Article 
CAS 

Google Scholar 
Zard, S. Z. Recent progress in the generation and use of nitrogen-centred radicals. Chem. Soc. Rev. 37, 1603–1618 (2008).Article 
CAS 
PubMed 

Google Scholar 
Jiang, H. & Studer, A. Intermolecular radical carboamination of alkenes. Chem. Soc. Rev. 49, 1790–1811 (2020).Article 
CAS 
PubMed 

Google Scholar 
Gentry, E. C. & Knowles, R. R. Synthetic applications of proton-coupled electron transfer. Acc. Chem. Res. 49, 1546–1556 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, H. & Studer, A. Chemistry with N-centered radicals generated by single-electron transfer-oxidation using photoredox catalysis. CCS Chem. 1, 38–49 (2019).Article 
CAS 

Google Scholar 
Pratley, C., Fenner, S. & Murphy, J. A. Nitrogen-centered radicals in functionalization of sp2 systems: generation, reactivity, and applications in synthesis. Chem. Rev. 122, 8181–8260 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Y. et al. N-heterocyclic carbene-catalyzed radical reactions for highly enantioselective β-hydroxylation of enals. J. Am. Chem. Soc. 137, 2416–2419 (2015).Article 
CAS 
PubMed 

Google Scholar 
Li, Q.-Z. et al. Remote C(sp3)–H acylation of amides and cascade cyclization via N-heterocyclic carbene organocatalysis. Angew. Chem. Int. Ed. 61, e202116629 (2022).Article 
CAS 

Google Scholar 
Zhang, X.-M., Tu, Y.-Q., Zhang, F.-M., Chen, Z.-H. & Wang, S.-H. Recent applications of the 1,2-carbon atom migration strategy in complex natural product total synthesis. Chem. Soc. Rev. 46, 2272–2305 (2017).Article 
CAS 
PubMed 

Google Scholar 
Regnier, V. et al. What are the radical intermediates in oxidative N-heterocyclic carbene organocatalysis? J. Am. Chem. Soc. 141, 1109–1117 (2019).Article 
CAS 
PubMed 

Google Scholar 
Bay, A. V. et al. Light-driven carbene catalysis for the synthesis of aliphatic and α-amino ketones. Angew. Chem. Int. Ed. 60, 17925–17931 (2021).Article 
CAS 

Google Scholar 
Li, Q.-Z. et al. Oxidative radical NHC catalysis: divergent difunctionalization of olefins through intermolecular hydrogen atom transfer. Angew. Chem. Int. Ed. 61, e202207824 (2022).Article 
CAS 

Google Scholar 
Ess, D. H. & Houk, K. N. Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity. J. Am. Chem. Soc. 129, 10646–10647 (2007).Article 
CAS 
PubMed 

Google Scholar 
Hayden, A. E. & Houk, K. N. Transition state distortion energies correlate with activation energies of 1,4-dihydrogenations and Diels–Alder cycloadditions of aromatic molecules. J. Am. Chem. Soc. 131, 4084–4089 (2009).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles