Synthesis of azahexabenzocoronenium salts through a formal [3 + 3] cycloaddition strategy

Clar, E. & Ironside, C. T. Hexabenzocoronene. Proc. Chem. Soc. https://doi.org/10.1039/PS9580000329 (1958).Clar, E., Ironside, C. T. & Zander, M. The electronic interaction between benzenoid rings in condensed aromatic hydrocarbons. 1:12-2:3-4:5-6:7-8:9-10:11-hexabenzocoronene, 1:2-3:4-5:6-10:11-tetrabenzoanthanthrene, and 4:5-6:7-11:12-13:14-tetrabenzoperopyrene. J. Chem. Soc. https://doi.org/10.1039/JR9590000142 (1959).Wu, J., Pisula, W. & Müllen, K. Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007).Article 
CAS 
PubMed 

Google Scholar 
Seyler, H., Purushothaman, B., Jones, D. J., Holmes, A. B. & Wong, W. W. H. Hexa-peri-hexabenzocoronene in organic electronics. Pure Appl. Chem. 84, 1047–1067 (2012).Article 
CAS 

Google Scholar 
Kumar, S. & Tao, Y.-T. Coronenes, benzocoronenes and beyond: modern aspects of their syntheses, properties, and applications. Chem. Asian J. 16, 621–647 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hill, J. P. et al. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304, 1481–1483 (2004).Article 
CAS 
PubMed 

Google Scholar 
Ishiwari, F., Shoji, Y. & Fukushima, T. Supramolecular scaffolds enabling the controlled assembly of functional molecular units. Chem. Sci. 9, 2028–2041 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lin, F.-J., Chen, H.-H. & Tao, Y.-T. Molecularly aligned hexa-peri-hexabenzocoronene films by brush-coating and their application in thin-film transistors. ACS Appl. Mater. Interfaces 11, 10801–10809 (2019).Article 
CAS 
PubMed 

Google Scholar 
Lin, F.-J., Yang, C.-W., Chen, H.-H. & Tao, Y.-T. Alignment and photopolymerization of hexa-peri-hexabenzocoronene derivatives carrying diacetylenic side chains for charge-transporting application. J. Am. Chem. Soc. 142, 11763–11771 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yin, M. et al. Functionalization of self-assembled hexa-peri-hexabenzocoronene fibers with peptides for bioprobing. J. Am. Chem. Soc. 131, 14618–14619 (2009).Article 
CAS 
PubMed 

Google Scholar 
Zilberman, Y. et al. Carbon nanotube/hexa-peri-hexabenzocoronene bilayers for discrimination between nonpolar volatile organic compounds of cancer and humid atmospheres. Adv. Mater. 22, 4317–4320 (2010).Article 
CAS 
PubMed 

Google Scholar 
Stępień, M., Gońka, E., Żyła, M. & Sprutta, N. Heterocyclic nanographenes and other polycyclic heteroaromatic compounds: synthetic routes, properties, and applications. Chem. Rev. 117, 3479–3716 (2017).Article 
PubMed 

Google Scholar 
Wang, X.-Y., Yao, X., Narita, A. & Müllen, K. Heteroatom-doped nanographenes with structural precision. Acc. Chem. Res. 52, 2491–2505 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Borissov, A. et al. Recent advances in heterocyclic nanographenes and other polycyclic heteroaromatic compounds. Chem. Rev. 122, 565–788 (2022).Article 
CAS 
PubMed 

Google Scholar 
Draper, S. M., Gregg, D. J. & Madathil, R. Heterosuperbenzenes: a new family of nitrogen-functionalized, graphitic molecules. J. Am. Chem. Soc. 124, 3486–3487 (2002).Article 
CAS 
PubMed 

Google Scholar 
Draper, S. M. et al. Complexed nitrogen heterosuperbenzene: the coordinating properties of a remarkable ligand. J. Am. Chem. Soc. 126, 8694–8701 (2004).Article 
CAS 
PubMed 

Google Scholar 
Wijesinghe, L. P. et al. [2 + 2 + 2] Cyclotrimerisation as a convenient route to 6N-doped nanographenes: a synthetic introduction to hexaazasuperbenzenes. RSC Adv. 7, 24163–24167 (2017).Article 
CAS 

Google Scholar 
Graczyk, A. et al. Terpyridine-fused polyaromatic hydrocarbons generated via cyclodehydrogenation and used as ligands in Ru(II) complexes. Dalton Trans. 41, 7746–7754 (2012).Article 
CAS 
PubMed 

Google Scholar 
Reger, D., Schöll, K., Hampel, F., Maid, H. & Jux, N. Pyridinic nanographenes by novel precursor design. Chem. Eur. J. 27, 1984–1989 (2021).Article 
CAS 
PubMed 

Google Scholar 
Krieg, M. et al. Construction of an internally B3N3-doped nanographene molecule. Angew. Chem. Int. Ed. 54, 8284–8286 (2015).Article 
CAS 

Google Scholar 
Wang, X.-Y. et al. Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling. Nat. Commun. 8, 1948 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Biswas, K. et al. On-surface synthesis of a dicationic diazahexabenzocoronene derivative on the Au(111) surface. Angew. Chem. Int. Ed. 60, 25551–25556 (2021).Article 
CAS 

Google Scholar 
Dosso, J. et al. Synthesis and optoelectronic properties of hexa-peri-hexabenzoborazinocoronene. Angew. Chem. Int. Ed. 56, 4483–4487 (2017).Article 
CAS 

Google Scholar 
Dosso, J. et al. Boron–nitrogen-doped nanographenes: a synthetic tale from borazine precursors. Chem. Eur. J. 26, 6608–6621 (2019).Article 

Google Scholar 
Berger, R. et al. Synthesis of nitrogen-doped zigzag-edge peripheries: dibenzo-9a-azaphenalene as repeating unit. Angew. Chem. Int. Ed. 53, 10520–10524 (2014).Article 
CAS 

Google Scholar 
Ito, S., Tokimaru, Y. & Nozaki, K. Isoquinolino[4,3,2-de]phenanthridine: synthesis and its use in 1,3-dipolar cycloadditions to form nitrogen-containing polyaromatic hydrocarbons. Chem. Commun. 51, 221–224 (2015).Article 
CAS 

Google Scholar 
Berger, R., Wagner, M., Feng, X. & Müllen, K. Polycyclic aromatic azomethine ylides: a unique entry to extended polycyclic heteroaromatics. Chem. Sci. 6, 436–441 (2015).Article 
CAS 
PubMed 

Google Scholar 
Tokimaru, Y., Ito, S. & Nozaki, K. Synthesis of pyrrole-fused corannulenes: 1,3-dipolar cycloaddition of azomethine ylides to corannulene. Angew. Chem. Int. Ed. 56, 15560–15564 (2017).Article 
CAS 

Google Scholar 
Dumele, O. et al. Photocatalytic aqueous CO2 reduction to CO and CH4 sensitized by ullazine supramolecular polymers. J. Am. Chem. Soc. 144, 3127–3136 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhang, X., Mackinnon, M. R., Bodwell, G. J. & Ito, S. Synthesis of a π-extended azacorannulenophane enabled by strain-Induced 1,3-dipolar cycloaddition. Angew. Chem. Int. Ed. 61, e202116585 (2022).Article 
CAS 

Google Scholar 
Li, S. et al. 1,3-Dipolar cycloaddition of polycyclic azomethine ylide to norcorroles: towards dibenzoullazine-fused derivatives. Chem. Commun. 58, 6510–6513 (2022).Article 
CAS 

Google Scholar 
Hager, J. et al. Acenaphthylene-fused ullazines: fluorescent π-extended monopyrroles with tunable electronic gaps. Org. Chem. Front. 9, 3179–3185 (2022).Article 
CAS 

Google Scholar 
Ikeda, H., Hoshi, Y. & Miyashi, T. 1,3-Bis(4-methoxyphenyl)cyclohexane-1,3-diyl cation radical: divergent reactivity depending upon electron-transfer conditions. Tetrahedron Lett. 42, 8485–8488 (2001).Article 
CAS 

Google Scholar 
Gaucher, X., Jida, M. & Ollivier, J. Concise total asymmetric synthesis of (S)-2-phenylpiperidin-3-one. Synlett 20, 3320–3322 (2009).
Google Scholar 
Xu, W.-B., Li, C. & Wang, J. RhI-catalyzed carbonylative [3 + 1] construction of cyclobutenones via C–C σ-bond activation of cyclopropenes. Chem. Eur. J. 24, 15786–15790 (2018).Article 
CAS 
PubMed 

Google Scholar 
Grzybowski, M., Skonieczny, K., Butenschön, H. & Gryko, D. T. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew. Chem. Int. Ed. 52, 9900–9930 (2013).Article 
CAS 

Google Scholar 
Grzybowski, M., Sadowski, B., Butenschön, H. & Gryko, D. T. Synthetic applications of oxidative aromatic coupling—from biphenols to nanographenes. Angew. Chem. Int. Ed. 59, 2998–3027 (2020).Article 
CAS 

Google Scholar 
Jassas, R. S. et al. Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review. RSC Adv. 11, 32158–32202 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schlichting, P., Rohr, U. & Müllen, K. Easy synthesis of liquid crystalline perylene derivatives. J. Mater. Chem. 8, 2651–2655 (1998).Article 
CAS 

Google Scholar 
Gryko, D. T., Piechowska, J. & Gałȩzowski, M. Strongly emitting fluorophores based on 1-azaperylene scaffold. J. Org. Chem. 75, 1297–1300 (2010).Article 
CAS 
PubMed 

Google Scholar 
Rickhaus, M., Belanger, A. P., Wegner, H. A. & Scott, L. T. An oxidation induced by potassium metal. Studies on the anionic cyclodehydrogenation of 1,1′-binaphthyl to perylene. J. Org. Chem. 75, 7358–7364 (2010).Article 
CAS 
PubMed 

Google Scholar 
Kawahara, K. P., Matsuoka, W., Ito, H. & Itami, K. Synthesis of nitrogen-containing polyaromatics by aza-annulative π-extension of unfunctionalized aromatics. Angew. Chem. Int. Ed. 59, 6383–6388 (2020).Article 
CAS 

Google Scholar 
Wang, C.-S., Sun, Q., García, F., Wang, C. & Yoshikai, N. Robust cobalt catalyst for nitrile/alkyne [2 + 2 + 2] cycloaddition: synthesis of polyarylpyridines and their mechanochemical cyclodehydrogenation to nitrogen-containing polyaromatics. Angew. Chem. Int. Ed. 60, 9627–9634 (2021).Article 
CAS 

Google Scholar 
Herwig, P. T., Enkelmann, V., Schmelz, O. & Müllen, K. Synthesis and structural characterization of hexa-tert-butyl-hexa-peri-hexabenzocoronene, its radical cation salt and its tricarbonylchromium complex. Chem. Eur. J. 6, 1834–1839 (2020).Article 

Google Scholar 
Nagase, M., Kato, K., Yagi, Y., Segawa, Y. & Itami, K. Six-fold C–H borylation of hexa-peri-hexabenzocoronene. Beilstein J. Org. Chem. 16, 391–397 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, Y. et al. Spiro-fused bis-hexa-peri-hexabenzocoronene. Chem. Commun. 54, 13575–13578 (2018).Article 
CAS 

Google Scholar 
Kastler, M., Schmidt, J., Pisula, W., Sebastiani, D. & Müllen, K. From armchair to zigzag peripheries in nanographenes. J. Am. Chem. Soc. 128, 9526–9534 (2006).Article 
CAS 
PubMed 

Google Scholar 
Ito, S., Tokimaru, Y. & Nozaki, K. Benzene-fused azacorannulene bearing an internal nitrogen atom. Angew. Chem. Int. Ed. 54, 7256–7260 (2015).Article 
CAS 

Google Scholar 
Bronner, C. et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 52, 4422–4425 (2013).Article 
CAS 

Google Scholar 
Vo, T. H. et al. Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chem. Commun. 50, 4172–4174 (2014).Article 
CAS 

Google Scholar 
Zhang, Y. et al. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons. Appl. Phys. Lett. 105, 023101 (2014).Article 

Google Scholar 
Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014).Article 
CAS 
PubMed 

Google Scholar 
Vo, T. H. et al. Nitrogen-doping induced self-assembly of graphene nanoribbon-based two-dimensional and three-dimensional metamaterials. Nano Lett. 15, 5770–5777 (2015).Article 
CAS 
PubMed 

Google Scholar 
Marangoni, T., Haberer, D., Rizzo, D. J., Cloke, R. R. & Fischer, F. R. Heterostructures through divergent edge reconstruction in nitrogen-doped segmented graphene nanoribbons. Chem. Eur. J. 22, 13037–13040 (2016).Article 
CAS 
PubMed 

Google Scholar 
Durr, R. A. et al. Orbitally matched edge-doping in graphene nanoribbons. J. Am. Chem. Soc. 140, 807–813 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wen, E. C. H. et al. Magnetic interactions in substitutional core-doped graphene nanoribbons. J. Am. Chem. Soc. 144, 13696–13703 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, T. et al. Aza-triangulene: on-surface synthesis and electronic and magnetic properties. J. Am. Chem. Soc. 144, 4522–4529 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lawrence, J. et al. Topological design and synthesis of high-spin aza-triangulenes without Jahn–Teller distortions. ACS Nano 17, 20237–20245 (2023).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles