General-purpose foundation models for increased autonomy in robot-assisted surgery

Blakeslee, S. Robot arm assists in three brain operations. The New York Times (25 June 1985).Seo, H.-J. et al. Comparison of robot-assisted radical prostatectomy and open radical prostatectomy outcomes: a systematic review and meta-analysis. Yonsei Med. J. 57, 1165–1177 (2016).Article 

Google Scholar 
Sheetz, K. H., Claflin, J. & Dimick, J. B. Trends in the adoption of robotic surgery for common surgical procedures. JAMA Netw. Open 3, e1918911 (2020).Article 

Google Scholar 
Dhanani, N. H. et al. The evidence behind robot-assisted abdominopelvic surgery: a systematic review. Ann. Intern. Med. 174, 1110–1117 (2021).Article 

Google Scholar 
Lotan, Y. Is robotic surgery cost-effective: no. Curr. Opin. Urol. 22, 66–69 (2012).Article 

Google Scholar 
Shademan, A. et al. Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 8, 337ra64 (2016).Article 

Google Scholar 
Saeidi, H. et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci. Robot. 7, eabj2908 (2022).Article 

Google Scholar 
Kuntz, A. et al. Autonomous medical needle steering in vivo. Sci. Robot. 8, eadf7614 (2023).Article 

Google Scholar 
Richter, F. et al. Autonomous robotic suction to clear the surgical field for hemostasis using image-based blood flow detection. IEEE Robot. Autom. Lett. 6, 1383–1390 (2021).Article 

Google Scholar 
Reed, S. et al. A generalist agent. Trans. Mach. Learn. Res. https://openreview.net/forum?id=1ikK0kHjvj (2022).Brohan, A. et al. RT-1: robotics transformer for real-world control at scale. In Proc. Robotics: Science and Systems XIX (eds Bekris, K. et al.) 25 (RSS, 2023).Zitkovich, B. et al. RT-2: vision-language-action models transfer web knowledge to robotic control. In Conference on Robot Learning 2165–2183 (PMLR, 2023).Open X-Embodiment Collaboration. Open X-Embodiment: robotic learning datasets and RT-X models. GitHub https://robotics-transformer-x.github.io (2023).Hu, Y. et al. Toward general-purpose robots via foundation models: a survey and meta-analysis. Preprint at https://arxiv.org/abs/2312.08782 (2023).Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34, 26–38 (2017).Article 

Google Scholar 
Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V. & Hutter, M. Learning quadrupedal locomotion over challenging terrain. Sci. Robot. 5, eabc5986 (2020).Article 

Google Scholar 
Agarwal, A., Kumar, A., Malik, J. & Pathak, D. Legged locomotion in challenging terrains using egocentric vision. In Conference on Robot Learning 403–415 (PMLR, 2023).Liu, R., Nageotte, F., Zanne, P., de Mathelin, M. & Dresp-Langley, B. Deep reinforcement learning for the control of robotic manipulation: a focussed mini-review. Robotics 10, 22 (2021).Article 

Google Scholar 
Zhao, T. Z., Kumar, V., Levine, S. & Finn, C. Learning fine-grained bimanual manipulation with low-cost hardware. In Proc. Robotics: Science and Systems XIX (eds Bekris, K. et al.) 16 (RSS, 2023).Yip, M. & Das, N. in The Encyclopedia of MEDICAL ROBOTICS: Volume 1 Minimally Invasive Surgical Robotics (ed. Patel, R. V.) 281–313 (World Scientific, 2019).Zhang, C., Vinyals, O., Munos, R. & Bengio, S. A study on overfitting in deep reinforcement learning. Preprint at https://arxiv.org/abs/1804.06893 (2018).Van Den Berg, J. et al. Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations. In 2010 IEEE International Conference on Robotics and Automation 2074–2081 (IEEE, 2010).Hu, Y. et al. Model predictive optimization for imitation learning from demonstrations. Robot. Auton. Syst. 163, 104381 (2023).Article 

Google Scholar 
Huang, T., Chen, K., Li, B., Liu, Y. H. & Dou, Q. Demonstration-guided reinforcement learning with efficient exploration for task automation of surgical robot. In 2023 IEEE International Conference on Robotics and Automation (ICRA) 4640–4647 (IEEE, 2023).Osa, T. et al. An algorithmic perspective on imitation learning. Found. Trends Robot. 7, 1–179 (2018).Article 

Google Scholar 
Ibarz, J. et al. How to train your robot with deep reinforcement learning: lessons we have learned. Int. J. Robot. Res. 40, 698–721 (2021).Article 

Google Scholar 
Octo Model Team et al. Octo: an open-source generalist robot policy. GitHub https://octo-models.github.io (2023).Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at https://arxiv.org/abs/2108.07258 (2021).Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).Article 

Google Scholar 
Touvron, H. et al. Llama 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023).Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) (NIPS 2017).Dosovitskiy, A. et al. An image is worth 16×16 words: transformers for image recognition at scale. In International Conference on Learning Representations (ICLR, 2021).Zemmar, A., Lozano, A. M. & Nelson, B. J. The rise of robots in surgical environments during COVID-19. Nat. Mach. Intell. 2, 566–572 (2020).Article 

Google Scholar 
Wang, K., Ho, C.-C., Zhang, C. & Wang, B. A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering 3, 653–662 (2017).Article 

Google Scholar 
Ghazi, A. A call for change. Can 3D printing replace cadavers for surgical training? Urol. Clin. 49, 39–56 (2022).Article 

Google Scholar 
Bismuth, H. Surgical anatomy and anatomical surgery of the liver. World J. Surg. 6, 3–9 (1982).Article 

Google Scholar 
Rice, C. P. et al. Operative complications and economic outcomes of cholecystectomy for acute cholecystitis. World J. Gastroenterol. 25, 6916 (2019).Article 

Google Scholar 
Kumar, A., Zhou, A., Tucker, G. & Levine, S. Conservative q-learning for offline reinforcement learning. Adv. Neural Inf. Process. Syst. 33, 1179–1191 (2020).
Google Scholar 
Yevgen, C. et al. Q-transformer: Scalable offline reinforcement learning via autoregressive q-functions. In Conference on Robot Learning 3909–3928 (PMLR, 2023).Angelopoulos, A. N. & Bates, S. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. Preprint at https://arxiv.org/abs/2107.07511 (2021).Ren, A. Z. et al. Robots that ask for help: uncertainty alignment for large language model planners. In Conference on Robot Learning 661–682 (PMLR, 2023).Zhang, T. Toward automated vehicle teleoperation: vision, opportunities, and challenges. IEEE Internet Things J. 7, 11347–11354 (2020).Article 

Google Scholar 
Lim, T., Hwang, M., Kim, E. & Cha, H. Authority transfer according to a driver intervention intention considering coexistence of communication delay. Computers 12, 228 (2023).Article 

Google Scholar 
Alhajj, H., Lamard, M., Conze, P.-h., Cochener, B. & Quellec, G. Cataracts. IEEEDataPort https://doi.org/10.21227/ac97-8m18 (2021).Schoeffmann, K. et al. Cataract-101: video dataset of 101 cataract surgeries. In Proc. 9th ACM Multimedia Systems Conference 421–425 (ACM, 2018).Bouget, D. et al. Detecting surgical tools by modelling local appearance and global shape. IEEE Trans. Med. Imaging 34, 2603–2617 (2015).Article 

Google Scholar 
Twinanda, A. P. et al. EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36, 86–97 (2016).Article 

Google Scholar 
Hong, W.-Y. et al. CholecSeg8k: a semantic segmentation dataset for laparoscopic cholecystectomy based on Cholec80. Preprint at https://arxiv.org/abs/2012.12453 (2020).Nwoye, C. I. et al. Rendezvous: attention mechanisms for the recognition of surgical action triplets in endoscopic videos. Med. Image Anal. 78, 102433 (2022).Article 

Google Scholar 
Maier-Hein, L. et al. Heidelberg colorectal data set for surgical data science in the sensor operating room. Sci. Data 8, 101 (2021).Article 

Google Scholar 
Valderrama, N. et al. Towards holistic surgical scene understanding. In International Conference on Medical Image Computing and Computer-assisted Intervention 442–452 (Springer, 2022).Gao, Y. et al. Jhu-isi gesture and skill assessment working set (jigsaws): a surgical activity dataset for human motion modeling. MICCAI Workshop: M2cai https://api.semanticscholar.org/CorpusID:16185857 (2014).Madapana, N. et al. Desk: a robotic activity dataset for dexterous surgical skills transfer to medical robots. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 6928–6934 (IEEE, 2019).Huaulmé, A. et al. Peg Transfer Workflow recognition challenge report: does multi-modal data improve recognition? Preprint at https://arxiv.org/abs/2202.05821 (2022).Rivas-Blanco, I., Del-Pulgar, C. J. P., Mariani, A., Tortora, G. & Reina, A. J. A surgical dataset from the da Vinci research kit for task automation and recognition. In 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) 1–6 (IEEE, 2023).Goodman, E. D. et al. A real-time spatiotemporal AI model analyzes skill in open surgical videos. Preprint at https://arxiv.org/abs/2112.07219 (2021).Yuan, K. et al. Learning multi-modal representations by watching hundreds of surgical video lectures. Preprint at https://arxiv.org/abs/2307.15220 (2023).Schmidgall, S., Cho, J., Zakka, C. & Hiesinger, W. GP-VLS: a general-purpose vision language model for surgery. Preprint at https://arxiv.org/abs/2407.19305 (2024).Kim, H.-S., Kim, D.-J. & Yoon, K.-H. Medical big data is not yet available: why we need realism rather than exaggeration. Endocrinol. Metab. 34, 349–354 (2019).Article 

Google Scholar 
Gabelica, M., Bojčić, R. & Puljak, L. Many researchers were not compliant with their published data sharing statement: a mixed-methods study. J. Clin. Epidemiol. 150, 33–41 (2022).Article 

Google Scholar 
Hamilton, D. G. et al. Prevalence and predictors of data and code sharing in the medical and health sciences: systematic review with meta-analysis of individual participant data. BMJ 382, e075767 (2023).Lin, J. et al. Automatic analysis of available source code of top artificial intelligence conference papers. Int. J. Softw. Eng. Knowl. Eng. 32, 947–970 (2022).Article 

Google Scholar 
Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).Article 

Google Scholar 
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 

Google Scholar 
Wu, C., Zhang, X., Zhang, Y., Wang, Y. & Xie, W. Towards generalist foundation model for radiology. Preprint at https://arxiv.org/abs/2308.02463 (2023).Wang, D. et al. A real-world dataset and benchmark for foundation model adaptation in medical image classification. Sci. Data 10, 574 (2023).Article 

Google Scholar 
Hsu, L. G. et al. Nonsurgical factors that influence the outcome of bariatric surgery: a review. Psychosom. Med. 60, 338–346 (1998).Article 

Google Scholar 
Benoist, S., Panis, Y., Alves, A. & Valleur, P. Impact of obesity on surgical outcomes after colorectal resection. Am. J. Surg. 179, 275–281 (2000).Article 

Google Scholar 
Rosenberger, P. H., Jokl, P. & Ickovics, J. Psychosocial factors and surgical outcomes: an evidence-based literature review. J. Am. Acad. Orthop. Surg. 14, 397–405 (2006).Article 

Google Scholar 
Lam, K. et al. Machine learning for technical skill assessment in surgery: a systematic review. npj Digit. Med. 5, 24 (2022).Article 

Google Scholar 
Khalid, S., Goldenberg, M., Grantcharov, T., Taati, B. & Rudzicz, F. Evaluation of deep learning models for identifying surgical actions and measuring performance. JAMA Netw. Open 3, e201664–e201664 (2020).Article 

Google Scholar 
Haque, T. F. et al. An assessment tool to provide targeted feedback to robotic surgical trainees: development and validation of the end-to-end assessment of suturing expertise (EASE). Urol. Pract. 9, 532–539 (2022).Article 

Google Scholar 
Moon, M. R. Early-and late-career surgeon deficiencies in complex cases. J. Thorac. Cardiovasc. Surg. 164, 1023–1025 (2022).Article 

Google Scholar 
O’Sullivan, S. et al. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 15, e1968 (2019).Article 

Google Scholar 
Van Norman, G. A. Drugs, devices, and the FDA: part 2: an overview of approval processes: FDA approval of medical devices. JACC Basic Transl. Sci. 1, 277–287 (2016).Article 

Google Scholar 
Kim, J. W. et al. Surgical robot transformer (SRT): imitation learning for surgical tasks. In Conference on Robot Learning (PMLR, 2024).Beasley, R. A. Medical robots: current systems and research directions. J. Robot. 2012, 401613 (2012).
Google Scholar 
Lee, C. et al. A grip force model for the da Vinci end-effector to predict a compensation force. Med. Biol. Eng. Comput. 5, 253–261 (2015).Article 

Google Scholar 

Hot Topics

Related Articles