Beermann, J., Piccoli, M. T., Viereck, J. & Thum, T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev. 96(4), 1297–1325 (2016).Article
CAS
PubMed
Google Scholar
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57 (2012).Cocquerelle, C., Mascrez, B., Hétuin, D. & Bailleul, B. Mis-splicing yields circular RNA molecules. FASEB J. 7, 155–160 (1993).Article
CAS
PubMed
Google Scholar
Hsu, M.-T. & Coca-Prados, M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280, 339–340 (1979).Article
ADS
CAS
PubMed
Google Scholar
Xu, C. & Zhang, J. Mammalian circular RNAs result largely from splicing errors. Cell Rep. 36, 109439 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, L. L. & Yang, L. Regulation of circRNA biogenesis. RNA Biol. 12, 381–388 (2015).Article
PubMed
PubMed Central
Google Scholar
Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).Article
ADS
CAS
PubMed
Google Scholar
Xiao, J. Circular RNAs: Biogenesis and functions Vol. 1087 (Springer, Cham, 2018).
Google Scholar
Salzman, J. Circular RNA expression: Its potential regulation and function. Trends Genet. 32, 309–316 (2016).Article
MathSciNet
CAS
PubMed
PubMed Central
Google Scholar
Lasda, E. & Parker, R. Circular RNAs: Diversity of form and function. RNA 20, 1829–1842 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Li, X., Yang, L. & Chen, L. L. The biogenesis, functions, and challenges of circular RNAs. Mol. cell 71, 428–442 (2018).Article
CAS
PubMed
Google Scholar
Huang, A., Zheng, H., Wu, Z., Chen, M. & Huang, Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics 10, 3503 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Sun, P. et al. The emerging roles of circRNAs in traits associated with livestock breeding. Wiley Interdiscip. Rev. RNA 14, e1775 (2023).Article
CAS
PubMed
Google Scholar
Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).Article
ADS
PubMed
PubMed Central
Google Scholar
Chen, J. et al. Regulation of cancer progression by circRNA and functional proteins. J. Cell. Physiol. 237, 373–388 (2022).Article
CAS
PubMed
Google Scholar
Li, R. et al. CircRNA: A rising star in gastric cancer. Cell. Mol. Life Sci. 77, 1661–1680 (2020).Article
CAS
PubMed
Google Scholar
Goodall, G. J. & Wickramasinghe, V. O. RNA in cancer. Nat. Rev. Cancer 21, 22–36 (2021).Article
CAS
PubMed
Google Scholar
Hang, D. et al. A novel plasma circular RNA circ FARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. 7, 2783–2791 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, S. et al. Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol. Cancer 20, 1–10 (2021).Article
Google Scholar
Pan, B. et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front. Genet. 10, 1096 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
Li, C. et al. Genome-wide analysis of circular RNAs in prenatal and postnatal pituitary glands of sheep. Sci. Rep. 7, 16143 (2017).Article
ADS
PubMed
PubMed Central
Google Scholar
Li, C. et al. Genome-wide analysis of circular RNAs in prenatal and postnatal muscle of sheep. Oncotarget 8, 97165 (2017).Article
PubMed
PubMed Central
Google Scholar
Cao, Y. et al. Expression profiles of circular RNAs in sheep skeletal muscle. Asian-Australasian J. Animal Sci. 31, 1550 (2018).Article
CAS
Google Scholar
Jin, C. et al. Changes in circRNA expression profiles related to the antagonistic effects of Escherichia coli F17 in lamb spleens. Sci. Rep. 8, 14524 (2018).Article
ADS
PubMed
PubMed Central
Google Scholar
Li, X. et al. Comprehensive expression profiling analysis of pituitary indicates that circRNA participates in the regulation of sheep estrus. Genes 10, 90 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang, Z. et al. Comparative transcriptomics identify key hypothalamic circular RNAs that participate in sheep (Ovis aries) reproduction. Animals 9, 557 (2019).Article
PubMed
PubMed Central
Google Scholar
La, Y. et al. Differential expression of circular RNAs in polytocous and monotocous uterus during the reproductive cycle of sheep. Animals 9, 797 (2019).Article
PubMed
PubMed Central
Google Scholar
La, Y. et al. Comprehensive analysis of differentially expressed profiles of mRNA, lncRNA, and circRNA in the uterus of seasonal reproduction sheep. Genes 11, 301 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao, L. et al. Identification and characterization of circular RNAs in association with the deposition of intramuscular fat in Aohan fine-wool sheep. Front. Genet. 12, 759747 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Liu, A. et al. Differential expression and functional analysis of CircRNA in the ovaries of low and high fecundity hanper sheep. Animals 11, 1863 (2021).Article
PubMed
PubMed Central
Google Scholar
Varela-Martínez, E., Corsi, G. I., Anthon, C., Gorodkin, J. & Jugo, B. M. Novel circRNA discovery in sheep shows evidence of high backsplice junction conservation. Sci. Rep. 11, 427 (2021).Article
PubMed
PubMed Central
Google Scholar
Robic, A., Cerutti, C., Kühn, C. & Faraut, T. Comparative analysis of the circular transcriptome in muscle, liver, and testis in three livestock species. Front. Genet. 12, 665153 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai, Z. et al. Identification of circular RNAs in the ovaries of hu sheep and local fat-tailed sheep during the luteal phase. Indian J. Animal Res. 57, 282–289 (2023).
Google Scholar
Xia, S. et al. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief. Bioinf. 18, 984–992 (2017).CAS
Google Scholar
Zhang, P. et al. Comprehensive identification of alternative back-splicing in human tissue transcriptomes. Nucleic Acids Res. 48, 1779–1789 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Liang, G., Yang, Y., Niu, G., Tang, Z. & Li, K. Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res. 24, 523–535 (2017).Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma, D., Sehgal, P., Sivasubbu, S. & Scaria, V. A genome-wide circular RNA transcriptome in rat. Biol. Methods Protocols 6, bpab016 (2021).Article
Google Scholar
Sharma, D. et al. A genome-wide map of circular RNAs in adult zebrafish. Sci. Rep. 9, 3432 (2019).Article
ADS
PubMed
PubMed Central
Google Scholar
Westholm, J. O. et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966–1980 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Ragan, C., Goodall, G. J., Shirokikh, N. E. & Preiss, T. Insights into the biogenesis and potential functions of exonic circular RNA. Sci. Rep. 9, 2048 (2019).Article
ADS
PubMed
PubMed Central
Google Scholar
Gonzàlez-Porta, M., Frankish, A., Rung, J., Harrow, J. & Brazma, A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 14, 1–11 (2013).Article
Google Scholar
Ji, P. et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 26, 3444–3460 (2019).Article
CAS
PubMed
Google Scholar
Du, W. W. et al. Identifying and characterizing circRNA-protein interaction. Theranostics 7, 4183 (2017).Article
CAS
PubMed
PubMed Central
Google Scholar
He, A. T., Liu, J., Li, F. & Yang, B. B. Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct. Target. Therapy 6, 185 (2021).Article
CAS
Google Scholar
Peña-Paladines, J. J., Wong, C. H. & Chen, Y. Circularized RNA as novel therapeutics in cancer. Int. J. Biochem. Cell Biol. 156, 106364 (2023).Article
PubMed
Google Scholar
Zeng, X., Lin, W., Guo, M. & Zou, Q. A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput. Biol. 13, e1005420 (2017).Article
ADS
PubMed
PubMed Central
Google Scholar
Nguyen, M. H., Nguyen, H. N. & Vu, T. N. Evaluation of methods to detect circular RNAs from single-end RNA-sequencing data. BMC Genomics 23, 1–13 (2022).Article
Google Scholar
Liu, H., Akhatayeva, Z., Pan, C., Liao, M. & Lan, X. Comprehensive comparison of two types of algorithm for circRNA detection from short-read RNA-Seq. Bioinformatics 38, 3037–3043 (2022).Article
CAS
PubMed
Google Scholar
Hansen, T. B. Improved circRNA identification by combining prediction algorithms. Front. Cell Dev. Biol. 6, 20 (2018).Article
ADS
PubMed
PubMed Central
Google Scholar
Rebolledo, C., Silva, J. P., Saavedra, N. & Maracaja-Coutinho, V. Computational approaches for circRNAs prediction and in silico characterization. Brief. Bioinf. 24, bbad154 (2023).Article
Google Scholar
Zhang, X.-O. et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26, 1277–1287 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Gao, Y., Wang, J. & Zhao, F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16, 1–16 (2015).Article
Google Scholar
Gao, Y., Zhang, J. & Zhao, F. Circular RNA identification based on multiple seed matching. Brief. Bioinf. 19, 803–810 (2018).Article
CAS
Google Scholar
Szabo, L. & Salzman, J. Detecting circular RNAs: Bioinformatic and experimental challenges. Nat. Rev. Genet. 17, 679–692 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Wu, W., Zhao, F. & Zhang, J. circAtlas 3.0: A gateway to 3 million curated vertebrate circular RNAs based on a standardized nomenclature scheme. Nucleic Acids Res. 52, D52–D60 (2024).Article
PubMed
Google Scholar
Cheng, J., Metge, F. & Dieterich, C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32, 1094–1096 (2016).Article
CAS
PubMed
Google Scholar
Vromman, M. et al. Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision. Nat. Methods 20, 1159–1169 (2023).Article
CAS
PubMed
PubMed Central
Google Scholar
Starke, S. et al. Exon circularization requires canonical splice signals. Cell Rep. 10, 103–111 (2015).Article
CAS
PubMed
Google Scholar
Dang, Y. et al. Tracing the expression of circular RNAs in human pre-implantation embryos. Genome Biol. 17, 1–15 (2016).Article
Google Scholar
Zhang, J. et al. Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells. RNA Biol. 16, 220–232 (2019).Article
PubMed
PubMed Central
Google Scholar
Wang, J. et al. Comprehensive analysis of differentially expressed circRNAs in the ovaries of low-and high-fertility sheep. Animals 13, 236 (2023).Article
CAS
PubMed
PubMed Central
Google Scholar
Xu, X. et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol. Cancer 19, 1–19 (2020).Article
Google Scholar
Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).Article
CAS
PubMed
Google Scholar
You, X. et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 18, 603–610 (2015).Article
CAS
PubMed
PubMed Central
Google Scholar
Tang, M., Kui, L., Lu, G. & Chen, W. Disease-associated circular RNAs: From biology to computational identification. BioMed Res. Int. 2020, 1–20 (2020).
Google Scholar
Gonzalez, E. & McGraw, T. E. Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc. Natl. Acad. Sci. 106, 7004–7009 (2009).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
DuBois, J. C. et al. Akt3-mediated protection against inflammatory demyelinating disease. Front. Immunol. 10, 437643 (2019).Article
Google Scholar
Escalera-Balsera, A., Roman-Naranjo, P. & Lopez-Escamez, J. A. Systematic review of sequencing studies and gene expression profiling in familial meniere disease. Genes 11, 1414 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Requena, T. et al. Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere’s disease. Hum. Mol. Genet. 24, 1119–1126 (2015).Article
CAS
PubMed
Google Scholar
Conforti, L. et al. Kif1Bβ isoform is enriched in motor neurons but does not change in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. Res. 71, 732–739 (2003).Article
CAS
PubMed
Google Scholar
Volenec, A., Bhogal, R. K., Moorman, J. M., Leslie, R. A. & Flanigan, T. P. Differential expression of DCC mRNA in adult rat forebrain. Neuroreport 8, 2913–2917 (1997).Article
CAS
PubMed
Google Scholar
Glasgow, S. D. et al. Pre-and post-synaptic roles for DCC in memory consolidation in the adult mouse hippocampus. Mol. Brain 13, 1–20 (2020).Article
Google Scholar
Li, W. et al. Aberrant palmitoylation caused by a ZDHHC21 mutation contributes to pathophysiology of Alzheimer’s disease. BMC Med. 21, 223 (2023).Article
CAS
PubMed
PubMed Central
Google Scholar
Vladimir Makarov, J. R. M., Alejo, C., De Adolfo Lopez, M., Jose Felix, M. M. & Coro, P. R. SORT1 mutation resulting in sortilin deficiency and p75NTR upregulation in a family with essential tremor. ASN Neuro. https://doi.org/10.1177/1759091415598290 (2015).Article
PubMed
PubMed Central
Google Scholar
Lu, C. et al. CircNr1h4 regulates the pathological process of renal injury in salt-sensitive hypertensive mice by targeting miR-155-5p. J. Cell. Mol. Med. 24, 1700–1712 (2020).Article
CAS
PubMed
Google Scholar
Awad, S. S., Lamb, H. K., Morgan, J. M., Dunlop, W. & Gillespie, J. I. Differential expression of ryanodine receptor RyR2 mRNA in the non-pregnant and pregnant human myometrium. Biochem. J. 322, 777–783 (1997).Article
CAS
PubMed
PubMed Central
Google Scholar
Stokes, D. L. & Wagenknecht, T. Calcium transport across the sarcoplasmic reticulum: Structure and function of Ca2+-ATPase and the ryanodine receptor. Eur. J. Biochem. 267, 5274–5279 (2000).Article
CAS
PubMed
Google Scholar
Missiaen, L. et al. Abnormal intracellular Ca2+ homeostasis and disease. Cell Calcium 28, 1–21 (2000).Article
CAS
PubMed
Google Scholar
Gambardella, J., Trimarco, B., Iaccarino, G. & Santulli, G. New insights in cardiac calcium handling and excitation-contraction coupling. Heart Fail. Res. Clin. Pract. 3, 373–385 (2018).
Google Scholar
Wang, Q. et al. Identification of RyR2-PBmice and the effects of transposon insertional mutagenesis of the RyR2 gene on cardiac function in mice. PeerJ 7, e6942 (2019).Article
PubMed
PubMed Central
Google Scholar
Li, M. et al. Research progress of Nedd4L in cardiovascular diseases. Cell Death Discov. 8, 206 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Bang, M.-L. et al. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J. Cell Biol. 153, 413–428 (2001).Article
CAS
PubMed
PubMed Central
Google Scholar
Purevjav, E. et al. Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum. Mol. Genet. 21, 2039–2053 (2012).Article
CAS
PubMed
PubMed Central
Google Scholar
Fabris, N., Mocchegiani, E., Mariotti, S., Pacini, F. & Pinchera, A. Thyroid-thymus interactions during development and aging. Hormone Res. Paediatr. 31, 85–89 (1989).Article
CAS
Google Scholar
Fabris, N., Mocchegiani, E., Mariotti, S., Pacini, F. & Pinchera, A. Thyroid function modulates thymic endocrine activity. J. Clin. Endocrinol. Metab. 62, 474–478 (1986).Article
CAS
PubMed
Google Scholar
Kanai, T. et al. Identification of STAT5A and STAT5B target genes in human T cells. PloS One 9, e86790 (2014).Article
ADS
PubMed
PubMed Central
Google Scholar
Zhang, J., Lyu, T., Cao, Y. & Feng, H. Role of TCF-1 in differentiation, exhaustion, and memory of CD8+ T cells: A review. FASEB J. 35, e21549 (2021).CAS
PubMed
Google Scholar
Müller, L., Hainberger, D., Stolz, V. & Ellmeier, W. NCOR1—a new player on the field of T cell development. J. Leukocyte Biol. 104, 1061–1068 (2018).Article
PubMed
Google Scholar
Fan, L. et al. FasL-PDPK1 pathway promotes the cytotoxicity of CD8+ T cells during ischemic stroke. Transl. Stroke Res. 11, 747–761 (2020).Article
CAS
PubMed
Google Scholar
Mazzi-Chaves, J. F. et al. Influence of genetic polymorphisms in genes of bone remodeling and angiogenesis process in the apical periodontitis. Braz. Dent. J. 29, 179–183 (2018).Article
PubMed
Google Scholar
Harshan, S., Dey, P. & Raghunathan, S. Altered transcriptional regulation of glycolysis in circulating CD8+ T cells of rheumatoid arthritis patients. Genes 13, 1216 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Pucharcos, C., Estivill, X. & de la Luna, S. Intersectin 2, a new multimodular protein involved in clathrin-mediated endocytosis. FEBS Lett. 478, 43–51 (2000).Article
CAS
PubMed
Google Scholar
Ashraf, S. et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat. Commun. 9, 1960 (2018).Article
ADS
PubMed
PubMed Central
Google Scholar
Kondo, M. et al. Case of hereditary kidney disease presenting thin basement membrane with a single heterozygous variant of Intersectin 2. J. Rural Med. 18, 143–148 (2023).Article
PubMed
PubMed Central
Google Scholar
Du, Y. et al. Polymorphism in protein tyrosine phosphatase receptor delta is associated with the risk of clear cell renal cell carcinoma. Gene 512, 64–69 (2013).Article
CAS
PubMed
Google Scholar
Azim, A. C. et al. DLG1: chromosome location of the closest human homologue of the Drosophila discs large tumor suppressor gene. Genomics 30, 613–616 (1995).Article
CAS
PubMed
Google Scholar
Veljačić Visković, D. et al. Spatio-temporal expression pattern of CAKUT candidate genes DLG1 and KIF12 during human kidney development. Biomolecules 13, 340 (2023).Article
PubMed
PubMed Central
Google Scholar
Mahoney, Z. X. et al. Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proc. Natl. Acad. Sci. 103, 19872–19877 (2006).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Paushter, D. H., Du, H., Feng, T. & Hu, F. The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol. 136, 1–17 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Bateman, A. & Bennett, H. P. The granulin gene family: From cancer to dementia. Bioessays 31, 1245–1254 (2009).Article
CAS
PubMed
Google Scholar
Wong, W. F., Kohu, K., Chiba, T., Sato, T. & Satake, M. Interplay of transcription factors in T-cell differentiation and function: The role of Runx. Immunology 132, 157–164 (2011).Article
CAS
PubMed
PubMed Central
Google Scholar
Swiatek, P. J., Lindsell, C. E., Del Amo, F. F., Weinmaster, G. & Gridley, T. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707–719 (1994).Article
CAS
PubMed
Google Scholar
Hamada, Y. et al. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126, 3415–3424 (1999).Article
CAS
PubMed
Google Scholar
McCright, B. et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128, 491–502 (2001).Article
CAS
PubMed
Google Scholar
Onuchic, L. F. et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription–factor domains and parallel beta-helix 1 repeats. Am. J. Hum. Genet. 70, 1305–1317 (2002).Article
CAS
PubMed
PubMed Central
Google Scholar
Blasum, B. S. et al. The kidney-specific expression of genes can be modulated by the extracellular osmolality. FASEB J. 30, 3588–3597 (2016).Article
CAS
Google Scholar
Hao, J. et al. microRNA-670 modulates Igf2bp1 expression to regulate RNA methylation in parthenogenetic mouse embryonic development. Sci. Rep. 10, 4782 (2020).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Wu, J. et al. Igf2bp1 is required for hepatic outgrowth during early liver development in zebrafish. Gene 744, 144632 (2020).Article
CAS
PubMed
Google Scholar
Nie, H., Maika, S. D., Tucker, P. W. & Gottlieb, P. D. A role for SATB1, a nuclear matrix association region-binding protein, in the development of CD8SP thymocytes and peripheral T lymphocytes. J. Immunol. 174, 4745–4752 (2005).Article
CAS
PubMed
Google Scholar
Gottimukkala, K. P. Role of SATB1 in T cell development and differentation, Dept. of Biology, (2013).Guo, X., Zhou, L., Wu, Y. & Li, J. KIF11 as a potential pan-cancer immunological biomarker encompassing the disease staging, prognoses, tumor microenvironment, and therapeutic responses. Oxidat. Med. Cell. Longevity 2022, 1–37 (2022).
Google Scholar
Bao, L., Qin, S., Li, C., Guo, Z. & Zhao, L. Regulatory networks of circRNAs related to transcription factors in Populus euphratica Oliv. heteromorphic leaves. Biosci. Rep. 39, 20190540 (2019).Article
Google Scholar
Zelenka, T. & Spilianakis, C. SATB1-mediated chromatin landscape in T cells. Nucleus 11, 117–131 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Logan, M. A., Steele, M. R. & Vetter, M. L. Expression of synaptic vesicle two-related protein SVOP in the developing nervous system of Xenopus laevis. Dev. Dyn. 234, 802–807 (2005).Article
CAS
PubMed
Google Scholar
Jiang, Y. et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344, 1168–1173 (2014).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Andrews, S. FastQC: a quality control tool for high throughput sequence data. Retrieved 17 May 2018 (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article
CAS
PubMed
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article
CAS
PubMed
PubMed Central
Google Scholar
Wu, J. et al. CircAST: Full-length assembly and quantification of alternatively spliced isoforms in circular RNAs. Genom. Proteom. Bioinf. 17, 522–534 (2019).Article
Google Scholar
Zheng, Y., Ji, P., Chen, S., Hou, L. & Zhao, F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 11, 1–20 (2019).Article
Google Scholar
Zhang, J., Chen, S., Yang, J. & Zhao, F. Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat. Commun. 11, 90 (2020).Article
ADS
PubMed
PubMed Central
Google Scholar
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).Article
CAS
PubMed
PubMed Central
Google Scholar
Jain, A. & Tuteja, G. TissueEnrich: Tissue-specific gene enrichment analysis. Bioinformatics 35, 1966–1967 (2019).Article
CAS
PubMed
Google Scholar
Uhlén, M. et al. Transcriptomics resources of human tissues and organs. Mol. Syst. Biol. 12, 862 (2016).Article
PubMed
PubMed Central
Google Scholar
Camargo, A. P., Vasconcelos, A. A., Fiamenghi, M. B., Pereira, G. A. & Carazzolle, M. F. Tspex: A tissue-specificity calculator for gene expression data. Res Square (2020).Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf. 14, 1–14 (2013).Article
Google Scholar
Shen, W. K. et al. AnimalTFDB 4.0: A comprehensive animal transcription factor database updated with variation and expression annotations. Nucleic Acids Res. 51, D39–D45 (2023).Article
CAS
PubMed
Google Scholar