Comprehensive circular RNA profiling in various sheep tissues

Beermann, J., Piccoli, M. T., Viereck, J. & Thum, T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev. 96(4), 1297–1325 (2016).Article 
CAS 
PubMed 

Google Scholar 
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57 (2012).Cocquerelle, C., Mascrez, B., Hétuin, D. & Bailleul, B. Mis-splicing yields circular RNA molecules. FASEB J. 7, 155–160 (1993).Article 
CAS 
PubMed 

Google Scholar 
Hsu, M.-T. & Coca-Prados, M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280, 339–340 (1979).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Xu, C. & Zhang, J. Mammalian circular RNAs result largely from splicing errors. Cell Rep. 36, 109439 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, L. L. & Yang, L. Regulation of circRNA biogenesis. RNA Biol. 12, 381–388 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Xiao, J. Circular RNAs: Biogenesis and functions Vol. 1087 (Springer, Cham, 2018).
Google Scholar 
Salzman, J. Circular RNA expression: Its potential regulation and function. Trends Genet. 32, 309–316 (2016).Article 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lasda, E. & Parker, R. Circular RNAs: Diversity of form and function. RNA 20, 1829–1842 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, X., Yang, L. & Chen, L. L. The biogenesis, functions, and challenges of circular RNAs. Mol. cell 71, 428–442 (2018).Article 
CAS 
PubMed 

Google Scholar 
Huang, A., Zheng, H., Wu, Z., Chen, M. & Huang, Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics 10, 3503 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, P. et al. The emerging roles of circRNAs in traits associated with livestock breeding. Wiley Interdiscip. Rev. RNA 14, e1775 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Chen, J. et al. Regulation of cancer progression by circRNA and functional proteins. J. Cell. Physiol. 237, 373–388 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, R. et al. CircRNA: A rising star in gastric cancer. Cell. Mol. Life Sci. 77, 1661–1680 (2020).Article 
CAS 
PubMed 

Google Scholar 
Goodall, G. J. & Wickramasinghe, V. O. RNA in cancer. Nat. Rev. Cancer 21, 22–36 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hang, D. et al. A novel plasma circular RNA circ FARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. 7, 2783–2791 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, S. et al. Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol. Cancer 20, 1–10 (2021).Article 

Google Scholar 
Pan, B. et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front. Genet. 10, 1096 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, C. et al. Genome-wide analysis of circular RNAs in prenatal and postnatal pituitary glands of sheep. Sci. Rep. 7, 16143 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Li, C. et al. Genome-wide analysis of circular RNAs in prenatal and postnatal muscle of sheep. Oncotarget 8, 97165 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Cao, Y. et al. Expression profiles of circular RNAs in sheep skeletal muscle. Asian-Australasian J. Animal Sci. 31, 1550 (2018).Article 
CAS 

Google Scholar 
Jin, C. et al. Changes in circRNA expression profiles related to the antagonistic effects of Escherichia coli F17 in lamb spleens. Sci. Rep. 8, 14524 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Li, X. et al. Comprehensive expression profiling analysis of pituitary indicates that circRNA participates in the regulation of sheep estrus. Genes 10, 90 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Z. et al. Comparative transcriptomics identify key hypothalamic circular RNAs that participate in sheep (Ovis aries) reproduction. Animals 9, 557 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
La, Y. et al. Differential expression of circular RNAs in polytocous and monotocous uterus during the reproductive cycle of sheep. Animals 9, 797 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
La, Y. et al. Comprehensive analysis of differentially expressed profiles of mRNA, lncRNA, and circRNA in the uterus of seasonal reproduction sheep. Genes 11, 301 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, L. et al. Identification and characterization of circular RNAs in association with the deposition of intramuscular fat in Aohan fine-wool sheep. Front. Genet. 12, 759747 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, A. et al. Differential expression and functional analysis of CircRNA in the ovaries of low and high fecundity hanper sheep. Animals 11, 1863 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Varela-Martínez, E., Corsi, G. I., Anthon, C., Gorodkin, J. & Jugo, B. M. Novel circRNA discovery in sheep shows evidence of high backsplice junction conservation. Sci. Rep. 11, 427 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Robic, A., Cerutti, C., Kühn, C. & Faraut, T. Comparative analysis of the circular transcriptome in muscle, liver, and testis in three livestock species. Front. Genet. 12, 665153 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhai, Z. et al. Identification of circular RNAs in the ovaries of hu sheep and local fat-tailed sheep during the luteal phase. Indian J. Animal Res. 57, 282–289 (2023).
Google Scholar 
Xia, S. et al. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief. Bioinf. 18, 984–992 (2017).CAS 

Google Scholar 
Zhang, P. et al. Comprehensive identification of alternative back-splicing in human tissue transcriptomes. Nucleic Acids Res. 48, 1779–1789 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liang, G., Yang, Y., Niu, G., Tang, Z. & Li, K. Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res. 24, 523–535 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sharma, D., Sehgal, P., Sivasubbu, S. & Scaria, V. A genome-wide circular RNA transcriptome in rat. Biol. Methods Protocols 6, bpab016 (2021).Article 

Google Scholar 
Sharma, D. et al. A genome-wide map of circular RNAs in adult zebrafish. Sci. Rep. 9, 3432 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Westholm, J. O. et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966–1980 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ragan, C., Goodall, G. J., Shirokikh, N. E. & Preiss, T. Insights into the biogenesis and potential functions of exonic circular RNA. Sci. Rep. 9, 2048 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Gonzàlez-Porta, M., Frankish, A., Rung, J., Harrow, J. & Brazma, A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 14, 1–11 (2013).Article 

Google Scholar 
Ji, P. et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 26, 3444–3460 (2019).Article 
CAS 
PubMed 

Google Scholar 
Du, W. W. et al. Identifying and characterizing circRNA-protein interaction. Theranostics 7, 4183 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
He, A. T., Liu, J., Li, F. & Yang, B. B. Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct. Target. Therapy 6, 185 (2021).Article 
CAS 

Google Scholar 
Peña-Paladines, J. J., Wong, C. H. & Chen, Y. Circularized RNA as novel therapeutics in cancer. Int. J. Biochem. Cell Biol. 156, 106364 (2023).Article 
PubMed 

Google Scholar 
Zeng, X., Lin, W., Guo, M. & Zou, Q. A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput. Biol. 13, e1005420 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Nguyen, M. H., Nguyen, H. N. & Vu, T. N. Evaluation of methods to detect circular RNAs from single-end RNA-sequencing data. BMC Genomics 23, 1–13 (2022).Article 

Google Scholar 
Liu, H., Akhatayeva, Z., Pan, C., Liao, M. & Lan, X. Comprehensive comparison of two types of algorithm for circRNA detection from short-read RNA-Seq. Bioinformatics 38, 3037–3043 (2022).Article 
CAS 
PubMed 

Google Scholar 
Hansen, T. B. Improved circRNA identification by combining prediction algorithms. Front. Cell Dev. Biol. 6, 20 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Rebolledo, C., Silva, J. P., Saavedra, N. & Maracaja-Coutinho, V. Computational approaches for circRNAs prediction and in silico characterization. Brief. Bioinf. 24, bbad154 (2023).Article 

Google Scholar 
Zhang, X.-O. et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26, 1277–1287 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gao, Y., Wang, J. & Zhao, F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16, 1–16 (2015).Article 

Google Scholar 
Gao, Y., Zhang, J. & Zhao, F. Circular RNA identification based on multiple seed matching. Brief. Bioinf. 19, 803–810 (2018).Article 
CAS 

Google Scholar 
Szabo, L. & Salzman, J. Detecting circular RNAs: Bioinformatic and experimental challenges. Nat. Rev. Genet. 17, 679–692 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, W., Zhao, F. & Zhang, J. circAtlas 3.0: A gateway to 3 million curated vertebrate circular RNAs based on a standardized nomenclature scheme. Nucleic Acids Res. 52, D52–D60 (2024).Article 
PubMed 

Google Scholar 
Cheng, J., Metge, F. & Dieterich, C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32, 1094–1096 (2016).Article 
CAS 
PubMed 

Google Scholar 
Vromman, M. et al. Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision. Nat. Methods 20, 1159–1169 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Starke, S. et al. Exon circularization requires canonical splice signals. Cell Rep. 10, 103–111 (2015).Article 
CAS 
PubMed 

Google Scholar 
Dang, Y. et al. Tracing the expression of circular RNAs in human pre-implantation embryos. Genome Biol. 17, 1–15 (2016).Article 

Google Scholar 
Zhang, J. et al. Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells. RNA Biol. 16, 220–232 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, J. et al. Comprehensive analysis of differentially expressed circRNAs in the ovaries of low-and high-fertility sheep. Animals 13, 236 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, X. et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol. Cancer 19, 1–19 (2020).Article 

Google Scholar 
Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).Article 
CAS 
PubMed 

Google Scholar 
You, X. et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 18, 603–610 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tang, M., Kui, L., Lu, G. & Chen, W. Disease-associated circular RNAs: From biology to computational identification. BioMed Res. Int. 2020, 1–20 (2020).
Google Scholar 
Gonzalez, E. & McGraw, T. E. Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc. Natl. Acad. Sci. 106, 7004–7009 (2009).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
DuBois, J. C. et al. Akt3-mediated protection against inflammatory demyelinating disease. Front. Immunol. 10, 437643 (2019).Article 

Google Scholar 
Escalera-Balsera, A., Roman-Naranjo, P. & Lopez-Escamez, J. A. Systematic review of sequencing studies and gene expression profiling in familial meniere disease. Genes 11, 1414 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Requena, T. et al. Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere’s disease. Hum. Mol. Genet. 24, 1119–1126 (2015).Article 
CAS 
PubMed 

Google Scholar 
Conforti, L. et al. Kif1Bβ isoform is enriched in motor neurons but does not change in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. Res. 71, 732–739 (2003).Article 
CAS 
PubMed 

Google Scholar 
Volenec, A., Bhogal, R. K., Moorman, J. M., Leslie, R. A. & Flanigan, T. P. Differential expression of DCC mRNA in adult rat forebrain. Neuroreport 8, 2913–2917 (1997).Article 
CAS 
PubMed 

Google Scholar 
Glasgow, S. D. et al. Pre-and post-synaptic roles for DCC in memory consolidation in the adult mouse hippocampus. Mol. Brain 13, 1–20 (2020).Article 

Google Scholar 
Li, W. et al. Aberrant palmitoylation caused by a ZDHHC21 mutation contributes to pathophysiology of Alzheimer’s disease. BMC Med. 21, 223 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vladimir Makarov, J. R. M., Alejo, C., De Adolfo Lopez, M., Jose Felix, M. M. & Coro, P. R. SORT1 mutation resulting in sortilin deficiency and p75NTR upregulation in a family with essential tremor. ASN Neuro. https://doi.org/10.1177/1759091415598290 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Lu, C. et al. CircNr1h4 regulates the pathological process of renal injury in salt-sensitive hypertensive mice by targeting miR-155-5p. J. Cell. Mol. Med. 24, 1700–1712 (2020).Article 
CAS 
PubMed 

Google Scholar 
Awad, S. S., Lamb, H. K., Morgan, J. M., Dunlop, W. & Gillespie, J. I. Differential expression of ryanodine receptor RyR2 mRNA in the non-pregnant and pregnant human myometrium. Biochem. J. 322, 777–783 (1997).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stokes, D. L. & Wagenknecht, T. Calcium transport across the sarcoplasmic reticulum: Structure and function of Ca2+-ATPase and the ryanodine receptor. Eur. J. Biochem. 267, 5274–5279 (2000).Article 
CAS 
PubMed 

Google Scholar 
Missiaen, L. et al. Abnormal intracellular Ca2+ homeostasis and disease. Cell Calcium 28, 1–21 (2000).Article 
CAS 
PubMed 

Google Scholar 
Gambardella, J., Trimarco, B., Iaccarino, G. & Santulli, G. New insights in cardiac calcium handling and excitation-contraction coupling. Heart Fail. Res. Clin. Pract. 3, 373–385 (2018).
Google Scholar 
Wang, Q. et al. Identification of RyR2-PBmice and the effects of transposon insertional mutagenesis of the RyR2 gene on cardiac function in mice. PeerJ 7, e6942 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, M. et al. Research progress of Nedd4L in cardiovascular diseases. Cell Death Discov. 8, 206 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bang, M.-L. et al. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J. Cell Biol. 153, 413–428 (2001).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Purevjav, E. et al. Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum. Mol. Genet. 21, 2039–2053 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fabris, N., Mocchegiani, E., Mariotti, S., Pacini, F. & Pinchera, A. Thyroid-thymus interactions during development and aging. Hormone Res. Paediatr. 31, 85–89 (1989).Article 
CAS 

Google Scholar 
Fabris, N., Mocchegiani, E., Mariotti, S., Pacini, F. & Pinchera, A. Thyroid function modulates thymic endocrine activity. J. Clin. Endocrinol. Metab. 62, 474–478 (1986).Article 
CAS 
PubMed 

Google Scholar 
Kanai, T. et al. Identification of STAT5A and STAT5B target genes in human T cells. PloS One 9, e86790 (2014).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, J., Lyu, T., Cao, Y. & Feng, H. Role of TCF-1 in differentiation, exhaustion, and memory of CD8+ T cells: A review. FASEB J. 35, e21549 (2021).CAS 
PubMed 

Google Scholar 
Müller, L., Hainberger, D., Stolz, V. & Ellmeier, W. NCOR1—a new player on the field of T cell development. J. Leukocyte Biol. 104, 1061–1068 (2018).Article 
PubMed 

Google Scholar 
Fan, L. et al. FasL-PDPK1 pathway promotes the cytotoxicity of CD8+ T cells during ischemic stroke. Transl. Stroke Res. 11, 747–761 (2020).Article 
CAS 
PubMed 

Google Scholar 
Mazzi-Chaves, J. F. et al. Influence of genetic polymorphisms in genes of bone remodeling and angiogenesis process in the apical periodontitis. Braz. Dent. J. 29, 179–183 (2018).Article 
PubMed 

Google Scholar 
Harshan, S., Dey, P. & Raghunathan, S. Altered transcriptional regulation of glycolysis in circulating CD8+ T cells of rheumatoid arthritis patients. Genes 13, 1216 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pucharcos, C., Estivill, X. & de la Luna, S. Intersectin 2, a new multimodular protein involved in clathrin-mediated endocytosis. FEBS Lett. 478, 43–51 (2000).Article 
CAS 
PubMed 

Google Scholar 
Ashraf, S. et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat. Commun. 9, 1960 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Kondo, M. et al. Case of hereditary kidney disease presenting thin basement membrane with a single heterozygous variant of Intersectin 2. J. Rural Med. 18, 143–148 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Du, Y. et al. Polymorphism in protein tyrosine phosphatase receptor delta is associated with the risk of clear cell renal cell carcinoma. Gene 512, 64–69 (2013).Article 
CAS 
PubMed 

Google Scholar 
Azim, A. C. et al. DLG1: chromosome location of the closest human homologue of the Drosophila discs large tumor suppressor gene. Genomics 30, 613–616 (1995).Article 
CAS 
PubMed 

Google Scholar 
Veljačić Visković, D. et al. Spatio-temporal expression pattern of CAKUT candidate genes DLG1 and KIF12 during human kidney development. Biomolecules 13, 340 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Mahoney, Z. X. et al. Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proc. Natl. Acad. Sci. 103, 19872–19877 (2006).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Paushter, D. H., Du, H., Feng, T. & Hu, F. The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol. 136, 1–17 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bateman, A. & Bennett, H. P. The granulin gene family: From cancer to dementia. Bioessays 31, 1245–1254 (2009).Article 
CAS 
PubMed 

Google Scholar 
Wong, W. F., Kohu, K., Chiba, T., Sato, T. & Satake, M. Interplay of transcription factors in T-cell differentiation and function: The role of Runx. Immunology 132, 157–164 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Swiatek, P. J., Lindsell, C. E., Del Amo, F. F., Weinmaster, G. & Gridley, T. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707–719 (1994).Article 
CAS 
PubMed 

Google Scholar 
Hamada, Y. et al. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126, 3415–3424 (1999).Article 
CAS 
PubMed 

Google Scholar 
McCright, B. et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128, 491–502 (2001).Article 
CAS 
PubMed 

Google Scholar 
Onuchic, L. F. et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription–factor domains and parallel beta-helix 1 repeats. Am. J. Hum. Genet. 70, 1305–1317 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blasum, B. S. et al. The kidney-specific expression of genes can be modulated by the extracellular osmolality. FASEB J. 30, 3588–3597 (2016).Article 
CAS 

Google Scholar 
Hao, J. et al. microRNA-670 modulates Igf2bp1 expression to regulate RNA methylation in parthenogenetic mouse embryonic development. Sci. Rep. 10, 4782 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, J. et al. Igf2bp1 is required for hepatic outgrowth during early liver development in zebrafish. Gene 744, 144632 (2020).Article 
CAS 
PubMed 

Google Scholar 
Nie, H., Maika, S. D., Tucker, P. W. & Gottlieb, P. D. A role for SATB1, a nuclear matrix association region-binding protein, in the development of CD8SP thymocytes and peripheral T lymphocytes. J. Immunol. 174, 4745–4752 (2005).Article 
CAS 
PubMed 

Google Scholar 
Gottimukkala, K. P. Role of SATB1 in T cell development and differentation, Dept. of Biology, (2013).Guo, X., Zhou, L., Wu, Y. & Li, J. KIF11 as a potential pan-cancer immunological biomarker encompassing the disease staging, prognoses, tumor microenvironment, and therapeutic responses. Oxidat. Med. Cell. Longevity 2022, 1–37 (2022).
Google Scholar 
Bao, L., Qin, S., Li, C., Guo, Z. & Zhao, L. Regulatory networks of circRNAs related to transcription factors in Populus euphratica Oliv. heteromorphic leaves. Biosci. Rep. 39, 20190540 (2019).Article 

Google Scholar 
Zelenka, T. & Spilianakis, C. SATB1-mediated chromatin landscape in T cells. Nucleus 11, 117–131 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Logan, M. A., Steele, M. R. & Vetter, M. L. Expression of synaptic vesicle two-related protein SVOP in the developing nervous system of Xenopus laevis. Dev. Dyn. 234, 802–807 (2005).Article 
CAS 
PubMed 

Google Scholar 
Jiang, Y. et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344, 1168–1173 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Andrews, S. FastQC: a quality control tool for high throughput sequence data. Retrieved 17 May 2018 (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article 
CAS 
PubMed 

Google Scholar 
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, J. et al. CircAST: Full-length assembly and quantification of alternatively spliced isoforms in circular RNAs. Genom. Proteom. Bioinf. 17, 522–534 (2019).Article 

Google Scholar 
Zheng, Y., Ji, P., Chen, S., Hou, L. & Zhao, F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 11, 1–20 (2019).Article 

Google Scholar 
Zhang, J., Chen, S., Yang, J. & Zhao, F. Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat. Commun. 11, 90 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jain, A. & Tuteja, G. TissueEnrich: Tissue-specific gene enrichment analysis. Bioinformatics 35, 1966–1967 (2019).Article 
CAS 
PubMed 

Google Scholar 
Uhlén, M. et al. Transcriptomics resources of human tissues and organs. Mol. Syst. Biol. 12, 862 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Camargo, A. P., Vasconcelos, A. A., Fiamenghi, M. B., Pereira, G. A. & Carazzolle, M. F. Tspex: A tissue-specificity calculator for gene expression data. Res Square (2020).Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf. 14, 1–14 (2013).Article 

Google Scholar 
Shen, W. K. et al. AnimalTFDB 4.0: A comprehensive animal transcription factor database updated with variation and expression annotations. Nucleic Acids Res. 51, D39–D45 (2023).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles