Electrosynthesis of urea by using Fe2O3 nanoparticles encapsulated in a conductive metal–organic framework

Xia, M. et al. Solar urea: towards a sustainable fertilizer industry. Angew. Chem. Int. Ed. 61, e202110158 (2022).Article 
CAS 

Google Scholar 
Lim, J., Fernández, C. A., Lee, S. W. & Hatzell, M. C. Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Lett. 6, 3676–3685 (2021).Article 
CAS 

Google Scholar 
Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).Article 
CAS 
PubMed 

Google Scholar 
Giddey, S., Badwal, S. P. S. & Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 38, 14576–14594 (2013).Article 
CAS 

Google Scholar 
Tang, C., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem. Int. Ed. 60, 19572–19590 (2021).Article 
CAS 

Google Scholar 
Wei, X. et al. Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 144, 11530–11535 (2022).Article 
CAS 
PubMed 

Google Scholar 
Geng, J. et al. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew. Chem. Int. Ed. 62, e202210958 (2023).Article 
CAS 

Google Scholar 
Lv, C. et al. A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS Nano 16, 8213–8222 (2022).Article 
CAS 
PubMed 

Google Scholar 
Leverett, J. et al. Tuning the coordination structure of Cu–N–C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3− to urea. Adv. Energy Mater. 12, 2201500 (2022).Article 
CAS 

Google Scholar 
Huang, Y. et al. Unveiling the quantification minefield in electrocatalytic urea synthesis. Chem. Eng. J. 453, 139836–139842 (2023).Article 
CAS 

Google Scholar 
Zhang, S. et al. High-efficiency electrosynthesis of urea over bacterial cellulose regulated Pd–Cu bimetallic catalyst. EES Catal. 1, 45–53 (2023).Article 
CAS 

Google Scholar 
Zhang, X. et al. Identifying and tailoring C−N coupling site for efficient urea synthesis over diatomic Fe−Ni catalyst. Nat. Commun. 13, 5337–5345 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, Y. et al. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites. Nat. Commun. 14, 4491–4502 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, N. et al. Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate. Sci. China Chem. 66, 1417–1424 (2023).Article 
CAS 

Google Scholar 
Meng, N. et al. Oxide-derived core–shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano 16, 9095–9104 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lv, C. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4, 868–876 (2021).Article 

Google Scholar 
Tu, X. et al. A universal approach for sustainable urea synthesis via intermediate assembly at the electrode/electrolyte interface. Angew. Chem. Int. Ed. 63, e202317087 (2024).Article 
CAS 

Google Scholar 
Yang, Q., Xu, Q. & Jiang, H. L. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem. Soc. Rev. 46, 4774–4808 (2017).Article 
CAS 
PubMed 

Google Scholar 
Gao, C., Lyu, F. & Yin, Y. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 121, 834–881 (2021).Article 
CAS 
PubMed 

Google Scholar 
Lin, L. et al. Rational design and synthesis of two-dimensional conjugated metal–organic polymers for electrocatalysis applications. Chem 8, 1822–1854 (2022).Article 
CAS 

Google Scholar 
Sheberla, D. et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).Article 
CAS 
PubMed 

Google Scholar 
Xu, J. et al. Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia. Angew. Chem. Int. Ed. 62, e202308044 (2023).Article 
CAS 

Google Scholar 
Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zhao, D. et al. Atomic-level engineering Fe1N2O2 interfacial structure derived from oxygen-abundant metal–organic frameworks to promote electrochemical CO2 reduction. Energy Environ. Sci. 15, 3795–3804 (2022).Article 
CAS 

Google Scholar 
Holder, C. F. & Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359–7365 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ke, F. et al. Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery. J. Mater. Chem. 21, 3843–3848 (2011).Article 
CAS 

Google Scholar 
Louie, M. W. & Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013).Article 
CAS 
PubMed 

Google Scholar 
Wei, C. et al. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem. Soc. Rev. 48, 2518–2534 (2019).Article 
CAS 
PubMed 

Google Scholar 
Xu, Z., Liang, Z., Guo, W. & Zou, R. In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts. Coord. Chem. Rev. 436, 213824–213850 (2021).Article 
CAS 

Google Scholar 
Perez-Gallent, E., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017).Article 
CAS 

Google Scholar 
Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).Article 
CAS 
PubMed 

Google Scholar 
Chen, T. et al. Continuous electrical conductivity variation in M3(hexaiminotriphenylene)2 (M = Co, Ni, Cu) MOF alloys. J. Am. Chem. Soc. 142, 12367–12373 (2020).Article 
CAS 
PubMed 

Google Scholar 
Hmadeh, M. et al. New porous crystals of extended metal–catecholates. Chem. Mater. 24, 3511–3513 (2012).Article 
CAS 

Google Scholar 
Kang, Y. S., Risbud, S., Rabolt, J. F. & Stroeve, P. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 8, 2209–2211 (1996).Article 
CAS 

Google Scholar 
Ding, P. et al. Elucidating the roles of Nafion/solvent formulations in copper-catalyzed CO2 electrolysis. ACS Catal. 13, 5336–5347 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, D., Zhang, L., Ruther, R. E. & Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12, 836–841 (2013).Article 
CAS 
PubMed 

Google Scholar 
Chen, G. et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 5, 605–613 (2020).Article 
CAS 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
CAS 
PubMed 

Google Scholar 
Hamann, D. R., Schlüter, M. & Chiang, C. Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494–1497 (1979).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles