Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science (1979) 330, 1503–1509 (2010).CAS
Google Scholar
Wilder, A. P. et al. The contribution of historical processes to contemporary extinction risk in placental mammals. Science (1979) 380, eabn5856 (2023).CAS
Google Scholar
Hutchings, J. A., Myers, R. A., García, V. B., Lucifora, L. O. & Kuparinen, A. Life-history correlates of extinction risk and recovery potential. Ecol. Appl. 22, 1061–1067 (2012).Article
PubMed
Google Scholar
Reynolds, J. D., Dulvy, N. K., Goodwin, N. B. & Hutchings, J. A. Biology of extinction risk in marine fishes. Proc. R. Soc. B: Biol. Sci. 272, 2337–2344 (2005).Article
Google Scholar
Oli, M. K. & Dobson, F. S. The relative importance of life‐history variables to population growth rate in Mammals: Cole’s prediction revisited. Am. Nat. 161, 422–440 (2003).Article
PubMed
Google Scholar
Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224 (2019).Article
PubMed
Google Scholar
Rogers, T. D., Cambiè, G. & Kaiser, M. J. Determination of size, sex and maturity stage of free swimming catsharks using laser photogrammetry. Mar. Biol. 164, 213 (2017).Article
PubMed
PubMed Central
Google Scholar
Levasseur, K. E., Stapleton, S. P. & Quattro, J. M. Precise natal homing and an estimate of age at sexual maturity in hawksbill turtles. Anim. Conserv. 24, 523–535 (2021).Article
Google Scholar
Valenzuela-Molina, M., Atkinson, S., Mashburn, K., Gendron, D. & Brownell, R. L. Fecal steroid hormones reveal reproductive state in female blue whales sampled in the Gulf of California, Mexico. Gen. Comp. Endocrinol. 261, 127–135 (2018).Article
CAS
PubMed
Google Scholar
Heydenrych, M. J., Budd, A. M., Mayne, B. & Jarman, S. A genomic predictor for age at sexual maturity for mammalian species. Evol. Appl. 17, e13635 (2024).Article
CAS
PubMed
PubMed Central
Google Scholar
Budd, A. M., Mayne, B., Berry, O. & Jarman, S. Fish species lifespan prediction from promoter cytosine-phosphate-guanine density. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13774, 1–14 (2023).Mayne, B., Berry, O. & Jarman, S. Redefining life expectancy and maximum lifespan for wildlife management. Austral Ecol. 45, 855–857 (2020).Article
Google Scholar
McLain, A. T. & Faulk, C. The evolution of CpG density and lifespan in conserved primate and mammalian promoters. Aging (Albany, NY) 10, 561 (2018).Article
CAS
PubMed
Google Scholar
Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466 (2007).Article
CAS
PubMed
Google Scholar
Saxonov, S., Berg, P. & Brutlag, D. L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl Acad. Sci. USA 103, 1412–1417 (2006).Article
CAS
PubMed
PubMed Central
Google Scholar
Tian, H., He, Y., Xue, Y. & Gao, Y. Q. Expression regulation of genes is linked to their CpG density distributions around transcription start sites. Life Sci. Alliance 5, e202101302 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Gardiner-Garden, M. & Frommer, M. CpG Islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).Article
CAS
PubMed
Google Scholar
Li, C. Z. et al. Epigenetic predictors of species maximum life span and other life-history traits in mammals. Sci. Adv. 10, eadm7273 (2024).Article
CAS
PubMed
PubMed Central
Google Scholar
Bergeron, L. A. et al. Evolution of the germline mutation rate across vertebrates. Nature 615, 285–291 (2023).Article
CAS
PubMed
PubMed Central
Google Scholar
Herculano-Houzel, S. Longevity and sexual maturity vary across species with number of cortical neurons, and humans are no exception. J. Comp. Neurol. 527, 1689–1705 (2019).Article
PubMed
Google Scholar
de Magalhães, J. P., Costa, J. & Church, G. M. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J. Gerontology: Ser. A 62, 149–160 (2007).
Google Scholar
Aylwin, C. F., Toro, C. A., Shirtcliff, E. & Lomniczi, A. Emerging genetic and epigenetic mechanisms underlying pubertal maturation in adolescence. J. Res. Adolesc. 29, 54–79 (2019).Article
PubMed
Google Scholar
Li, C. et al. MKRN3 regulates the epigenetic switch of mammalian puberty via ubiquitination of MBD3. Natl Sci. Rev. 7, 671–685 (2020).Article
PubMed
PubMed Central
Google Scholar
Ball, G. F. & Wade, J. The value of comparative approaches to our understanding of puberty as illustrated by investigations in birds and reptiles. Horm. Behav. 64, 211–214 (2013).Article
PubMed
Google Scholar
MacLean, J. A. et al. Rhox: a new homeobox gene cluster. Cell 120, 369–382 (2005).Article
CAS
PubMed
Google Scholar
Yang, N. et al. A hyper-quiescent chromatin state formed during aging is reversed by regeneration. Mol. Cell 83, 1659–1676.e11 (2023).Article
CAS
PubMed
PubMed Central
Google Scholar
Choi, Y., Ballow, D. J., Xin, Y. & Rajkovic, A. Lim homeobox gene, Lhx8, is essential for mouse oocyte differentiation and survival1. Biol. Reprod. 79, 442–449 (2008).Article
CAS
PubMed
PubMed Central
Google Scholar
Fan, G. et al. Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K). Gigascience 9, giaa080 (2020).Article
PubMed
PubMed Central
Google Scholar
Lewin, H. A. et al. The Earth BioGenome Project 2020: starting the clock. Proc. Natl Acad. Sci. USA 119, e2115635118 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Dennis, B., Munholland, P. L. & Scott, J. M. Estimation of growth and extinction parameters for endangered species. Ecol. Monogr. 61, 115–143 (1991).Article
Google Scholar
Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I. & Monaghan, P. Identifying the demographic determinants of population growth rate: a case study of red-billed choughs Pyrrhocorax pyrrhocorax. J. Anim. Ecol. 73, 777–788 (2004).Article
Google Scholar
Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).Article
CAS
PubMed
Google Scholar
Staerk, J. et al. Performance of generation time approximations for extinction risk assessments. J. Appl. Ecol. 56, 1436–1446 (2019).Article
Google Scholar
Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 19, 131 (2018).Article
PubMed
PubMed Central
Google Scholar
Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet. 39, 545–559 (2023).Article
CAS
PubMed
Google Scholar
Mayne, B., Berry, O., Davies, C., Farley, J. & Jarman, S. A genomic predictor of lifespan in vertebrates. Sci. Rep. 9, 17866 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
De Magalhães, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 22, 1770–1774 (2009).Article
PubMed
Google Scholar
Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109 (2015).Article
Google Scholar
Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).Article
Google Scholar
Périer, R. C., Praz, V., Junier, T., Bonnard, C. & Bucher, P. The Eukaryotic Promoter Database (EPD). Nucleic Acids Res. 28, 302–303 (2000).Article
PubMed
PubMed Central
Google Scholar
Dreos, R., Ambrosini, G., Périer, R. C. & Bucher, P. The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res. 43, D92–D96 (2015).Article
CAS
PubMed
Google Scholar
Lenhard, B., Sandelin, A. & Carninci, P. Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat. Rev. Genet. 13, 233–245 (2012).Article
CAS
PubMed
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2013).Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1 (2010).Article
PubMed
PubMed Central
Google Scholar
Ooi, H. glmnetUtils: utilities for’Glmnet’. R package version 1.1. 5. https://cran.r-project.org/web/packages/glmnetUtils/glmnetUtils.pdf (2020).Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).Article
Google Scholar
Stock, A., Gregr, E. J. & Chan, K. M. A. Data leakage jeopardizes ecological applications of machine learning. Nat. Ecol. Evol. 7, 1743–1745 (2023).Article
PubMed
Google Scholar
Kapoor, S. & Narayanan, A. Leakage and the reproducibility crisis in machine-learning-based science. Patterns 4, 100804 (2023).Article
PubMed
PubMed Central
Google Scholar
Taquet, V., Blot, V., Morzadec, T., Lacombe, L. & Brunel, N. MAPIE: an open-source library for distribution-free uncertainty quantification. arXiv preprint arXiv:2207.12274 (2022).Kim, B., Xu, C. & Barber, R. Predictive inference is free with the jackknife+-after-bootstrap. Adv. Neural Inf. Process. Syst. 33, 4138–4149 (2020).
Google Scholar
Yong, S. Y. & Ong, C. S. Uncertainty quantification of the virial black hole mass with conformal prediction. Mon. Not. R. Astron Soc. 524, 3116–3129 (2023).Article
CAS
Google Scholar
Quenouille, M. H. Problems in plane sampling. Ann. Math. Stat. 20, 355–375 (1949).Article
Google Scholar
Khosravi, A., Nahavandi, S. & Creighton, D. Construction of optimal prediction intervals for load forecasting problems. IEEE Trans. Power Syst. 25, 1496–1503 (2010).Article
Google Scholar
Kolberg, L., Raudvere, U., Kuzmin, I., Vilo, J. & Peterson, H. gprofiler2—an R package for gene list functional enrichment analysis and namespace conversion toolset g: Profiler. F1000Res 9, ELIXIR–709 (2020).Article
PubMed
PubMed Central
Google Scholar
Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).Article
Google Scholar
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).Article
Google Scholar
Xu, S. et al. ggtreeExtra: compact visualization of richly annotated phylogenetic data. Mol. Biol. Evol. 38, 4039–4042 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article
Google Scholar
Kuhn, M. et al. Package ‘caret’. R. J. 223, 7 (2020).
Google Scholar
Harris et al. Array programming with NumPy. Nature 585, 357–362 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
McKinney, W. Data structures for statistical computing in Python. SciPy 445, 51–56 (2010).
Google Scholar
Virtanen, P. et al. Fundamental algorithms for scientific computing in Python and SciPy 1.0 contributors. SciPy 1.0. Nat. Methods 17, 261–272 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Google Scholar
Budd, A. M. & Yong, S. Y. Code and Data for ‘Universal Prediction of Vertebrate Species Age at Maturity’ https://doi.org/10.5281/zenodo.13637779 (2024).