Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294, 5181–5197 (2019).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife 7, e35383 (2018).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Scheres, S. H. W. Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol. 579, 125–157 (2016).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Scheres, S. H. W. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Penczek, P. A., Kimmel, M. & Spahn, C. M. T. Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images. Structure 19, 1582–1590 (2011).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Tagare, H. D., Kucukelbir, A., Sigworth, F. J., Wang, H. & Rao, M. Directly reconstructing principal components of heterogeneous particles from cryo-EM images. J. Struct. Biol. 191, 245–262 (2015).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
van Heel, M., Portugal, R. V. & Schatz, M. Multivariate statistical analysis of large datasets: single particle electron microscopy. Open J. Stat. 06, 701–739 (2016).ArticleÂ
Google ScholarÂ
Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Zhong, E. D., Lerer, A., Davis, J. H. & Berger, B. Cryodrgn2: Ab initio neural reconstruction of 3d protein structures from real cryo-em images. In Proceedings of the IEEE/CVF International Conference on Computer Vision 4046–4055 (IEEE, 2021).Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at https://arxiv.org/abs/1312.6114 (2013).Punjani, A. & Fleet, D. J. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nat. Methods 20, 860–870 (2023).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Chen, M., Toader, B. & Lederman, R. Integrating molecular models into cryoEM heterogeneity analysis using scalable high-resolution deep Gaussian mixture models. J. Mol. Biol. 435, 168014 (2023).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Chen, M. & Ludtke, S. J. Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. Nat. Methods 18, 930–936 (2021).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Hamitouche, I. & Jonic, S. DeepHEMNMA: ResNet-based hybrid analysis of continuous conformational heterogeneity in cryo-EM single particle images. Front. Mol. Biosci. 9, 965645 (2022).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Nashed, Y. S. G. et al. Heterogeneous reconstruction of deformable atomic models in Cryo-EM. Preprint at https://arxiv.org/abs/2209.15121 (2022).Herreros, D. et al. Estimating conformational landscapes from cryo-EM particles by 3D Zernike polynomials. Nat. Commun. 14, 154 (2023).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Zhong, E. D., Lerer, A., Davis, J. H. & Berger, B. Exploring generative atomic models in cryo-EM reconstruction. Preprint at https://arxiv.org/abs/2107.01331 (2021).Rosenbaum, D. et al. Inferring a continuous distribution of atom coordinates from cryo-EM images using VAEs. Preprint at https://arxiv.org/abs/2106.14108 (2021).Ma, J. Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13, 373–380 (2005).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Plaschka, C., Lin, P.-C. & Nagai, K. Structure of a pre-catalytic spliceosome. Nature 546, 617–621 (2017).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Wan, R. et al. The 3.8 Ã… structure of the U4/U6.U5 tri-snRNP: insights into spliceosome assembly and catalysis. Science 351, 466–475 (2016).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Chen, M. et al. Molecular architecture of black widow spider neurotoxins. Nat. Commun. 12, 6956 (2021).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Schwab, J., Kimanius, D., Burt, A., Dendooven, T. & Scheres, S. H. W. DynaMight: estimating molecular motions with improved reconstruction from cryo-EM images. Nat. Methods https://doi.org/10.1038/s41592-024-02377-5(2024).Kwon, D. H., Zhang, F., Fedor, J. G., Suo, Y. & Lee, S.-Y. Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis. Nat. Commun. 13, 2874 (2022).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Souza, P. C. T. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods 18, 382–388 (2021).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Ekeberg, M., Lövkvist, C., Lan, Y., Weigt, M. & Aurell, E. Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys. Rev. E 87, 012707 (2013).ArticleÂ
Google ScholarÂ
Tancik, M. et al. Fourier features let networks learn high frequency functions in low dimensional domains. In Proceedings of the 34th Conference on Neural Information Processing Systems https://proceedings.neurips.cc/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf (NeurIPS, 2020).Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Koo, B. et al. CryoChains: heterogeneous reconstruction of molecular assembly of semi-flexible chains from cryo-EM images. Preprint at https://arxiv.org/abs/2306.07274 (2023).