CryoSTAR: leveraging structural priors and constraints for cryo-EM heterogeneous reconstruction

Lyumkis, D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 294, 5181–5197 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Article 
CAS 
PubMed 

Google Scholar 
Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife 7, e35383 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Scheres, S. H. W. Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol. 579, 125–157 (2016).Article 
CAS 
PubMed 

Google Scholar 
Scheres, S. H. W. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007).Article 
CAS 
PubMed 

Google Scholar 
Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).Article 
CAS 
PubMed 

Google Scholar 
Penczek, P. A., Kimmel, M. & Spahn, C. M. T. Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images. Structure 19, 1582–1590 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tagare, H. D., Kucukelbir, A., Sigworth, F. J., Wang, H. & Rao, M. Directly reconstructing principal components of heterogeneous particles from cryo-EM images. J. Struct. Biol. 191, 245–262 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
van Heel, M., Portugal, R. V. & Schatz, M. Multivariate statistical analysis of large datasets: single particle electron microscopy. Open J. Stat. 06, 701–739 (2016).Article 

Google Scholar 
Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhong, E. D., Lerer, A., Davis, J. H. & Berger, B. Cryodrgn2: Ab initio neural reconstruction of 3d protein structures from real cryo-em images. In Proceedings of the IEEE/CVF International Conference on Computer Vision 4046–4055 (IEEE, 2021).Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at https://arxiv.org/abs/1312.6114 (2013).Punjani, A. & Fleet, D. J. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nat. Methods 20, 860–870 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, M., Toader, B. & Lederman, R. Integrating molecular models into cryoEM heterogeneity analysis using scalable high-resolution deep Gaussian mixture models. J. Mol. Biol. 435, 168014 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, M. & Ludtke, S. J. Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. Nat. Methods 18, 930–936 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hamitouche, I. & Jonic, S. DeepHEMNMA: ResNet-based hybrid analysis of continuous conformational heterogeneity in cryo-EM single particle images. Front. Mol. Biosci. 9, 965645 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nashed, Y. S. G. et al. Heterogeneous reconstruction of deformable atomic models in Cryo-EM. Preprint at https://arxiv.org/abs/2209.15121 (2022).Herreros, D. et al. Estimating conformational landscapes from cryo-EM particles by 3D Zernike polynomials. Nat. Commun. 14, 154 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhong, E. D., Lerer, A., Davis, J. H. & Berger, B. Exploring generative atomic models in cryo-EM reconstruction. Preprint at https://arxiv.org/abs/2107.01331 (2021).Rosenbaum, D. et al. Inferring a continuous distribution of atom coordinates from cryo-EM images using VAEs. Preprint at https://arxiv.org/abs/2106.14108 (2021).Ma, J. Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13, 373–380 (2005).Article 
CAS 
PubMed 

Google Scholar 
Plaschka, C., Lin, P.-C. & Nagai, K. Structure of a pre-catalytic spliceosome. Nature 546, 617–621 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wan, R. et al. The 3.8 Å structure of the U4/U6.U5 tri-snRNP: insights into spliceosome assembly and catalysis. Science 351, 466–475 (2016).Article 
CAS 
PubMed 

Google Scholar 
Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, M. et al. Molecular architecture of black widow spider neurotoxins. Nat. Commun. 12, 6956 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schwab, J., Kimanius, D., Burt, A., Dendooven, T. & Scheres, S. H. W. DynaMight: estimating molecular motions with improved reconstruction from cryo-EM images. Nat. Methods https://doi.org/10.1038/s41592-024-02377-5(2024).Kwon, D. H., Zhang, F., Fedor, J. G., Suo, Y. & Lee, S.-Y. Vanilloid-dependent TRPV1 opening trajectory from cryoEM ensemble analysis. Nat. Commun. 13, 2874 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Souza, P. C. T. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods 18, 382–388 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ekeberg, M., Lövkvist, C., Lan, Y., Weigt, M. & Aurell, E. Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys. Rev. E 87, 012707 (2013).Article 

Google Scholar 
Tancik, M. et al. Fourier features let networks learn high frequency functions in low dimensional domains. In Proceedings of the 34th Conference on Neural Information Processing Systems https://proceedings.neurips.cc/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf (NeurIPS, 2020).Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).Article 
CAS 
PubMed 

Google Scholar 
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).Article 
CAS 
PubMed 

Google Scholar 
Koo, B. et al. CryoChains: heterogeneous reconstruction of molecular assembly of semi-flexible chains from cryo-EM images. Preprint at https://arxiv.org/abs/2306.07274 (2023).

Hot Topics

Related Articles