Druggable targets for Parkinson’s disease: transcriptomics based Mendelian randomization study

Reich, S. G. & Savitt, J. M. Parkinson’s disease. Med. Clin. North Am. 103, 337–350 (2019).Article 
PubMed 

Google Scholar 
Jankovic, J. & Tan, E. K. Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 91 (2020).Riboldi, G. M., Frattini, E., Monfrini, E., Frucht, S. J. & Di Fonzo, A. A practical approach to early-onset parkinsonism. J. Parkinson’s Dis. 12 (2022).Kalia, L. V., Brotchie, J. M. & Fox, S. H. Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov. Disord. 28, 131–144 (2013).Article 
PubMed 

Google Scholar 
Haddad, F., Sawalha, M., Khawaja, Y., Najjar, A. & Karaman, R. Dopamine and levodopa prodrugs for the treatment of Parkinson’s disease. Molecules (Basel, Switzerland) 23 (2017).Herbers, C. et al. Dopamine replacement therapy normalizes reactive step length to postural perturbations in Parkinson’s disease. Gait Posture 101, 95–100 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
You, H. Molecular basis of dopamine replacement therapy and its side effects in Parkinson’s disease. Cell Tissue Res. 373 (2018).Day, J. O. & Mullin, S. The genetics of Parkinson’s disease and implications for clinical practice. Genes 12 (2021).Pajares, M., I. Rojo, A., Manda, G., Boscá, L. & Cuadrado, A. Inflammation in Parkinson’s disease: mechanisms and therapeutic implications. Cells 9 (2020).Polissidis, A., Petropoulou-Vathi, L., Nakos-Bimpos, M. & Rideout, H. The future of targeted gene-based treatment strategies and biomarkers in Parkinson’s disease. Biomolecules 10 (2020).Park, J., Davis, R. & Sue, C. Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep. 18 (2018).Zhang, P. F. & Gao, F. Neuroinflammation in Parkinson’s disease: a meta-analysis of PET imaging studies. J. Neurol. 269 (2022).Li T & Le W. Biomarkers for Parkinson’s disease: how good are they? Neurosci. Bull. 36 (2020).King, E., Davis, J. & Degner, J. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15 (2019).Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47 (2015).Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9 (2017).Floris, M., Olla, S., Schlessinger, D. & Cucca, F. Genetic-driven druggable target identification and validation. Trends Genet. 34, 558–570 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Storm, C. S. et al. Finding genetically-supported drug targets for Parkinson’s disease using Mendelian randomization of the druggable genome. Nat. Commun. 12, 7342 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Pagoni, P., Dimou, N. L., Murphy, N. & Stergiakouli, E. Using Mendelian randomisation to assess causality in observational studies. Evid. Based Ment. Health 22, 67–71 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Sekula, P., Del Greco M, F., Pattaro, C. & Köttgen, A. Mendelian randomization as an approach to assess causality using observational data. J. Am. Soc. Nephrol. 27, 3253–3265 (2016).Swerdlow, D. I. et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).Article 
PubMed 

Google Scholar 
Gaziano, L. et al. Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nat. Med. 27 (2021).Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020).Article 
PubMed 

Google Scholar 
Wu, C. et al. Identifying novel risk genes in intracranial aneurysm by integrating human proteomes and genetics. Brain 147, 2817–2825 (2024).Article 
PubMed 

Google Scholar 
Doostparast Torshizi, A. et al. Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson’s disease. Nat. Commun. 15, 6430 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Billingsley, K. J. et al. Mitochondria function associated genes contribute to Parkinson’s Disease risk and later age at onset. NPJ Parkinsons Dis. 5, 8 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Freshour, S. L. et al. Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 49, D1144–D1151 (2021).Mohammad, N., Nazli, R., Zafar, H. & Fatima, S. Effects of lipid based Multiple Micronutrients Supplement on the birth outcome of underweight pre-eclamptic women: A randomized clinical trial. Pak. J. Med. Sci. 38,(2022).Viechtbauer, W. Conducting meta-analyses in R with the metafor Package. J. Stat. Softw. 36, 1–48 (2010).Article 

Google Scholar 
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).Article 
MathSciNet 

Google Scholar 
Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb) 2, 100141 (2021).Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).Article 
PubMed 

Google Scholar 
Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102, 15545–15550 (2005).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv. https://doi.org/10.1101/2020.08.10.244293 (2020).Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 7, e34408 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).Article 
PubMed 

Google Scholar 
Wu, Y. et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat. Commun. 9, 918 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Beckers, M., Bloem, B. R. & Verbeek, M. M. Mechanisms of peripheral levodopa resistance in Parkinson’s disease. NPJ Parkinsons Dis. 8, 56 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Mohammed, S., Russo, I. & Ramazzina, I. Uncovering the role of natural and synthetic small molecules in counteracting the burden of α-synuclein aggregates and related toxicity in different models of Parkinson’s disease. Int. J. Mol. Sci. 24, 13370 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Biebl, M. M. et al. Structural elements in the flexible tail of the co-chaperone p23 coordinate client binding and progression of the Hsp90 chaperone cycle. Nat. Commun. 12, 828 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Brembati, V., Faustini, G., Longhena, F., Outeiro, T. & Bellucci, A. Changes in α-synuclein posttranslational modifications in an AAV-based mouse model of Parkinson’s disease. Int. J. Mol. Sci. 24 (2023).Desai Bradaric, B., Patel, A., Schneider, J., Carvey, P. & Hendey, B. Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J. Neural Transm. (Vienna, Austria: 1996) 119 (2012).Gundersen, V. Parkinson’s disease: can targeting inflammation be an effective neuroprotective strategy? Front. Neurosci. 14 (2021).Wu, L., Xu, Y., Zhao, H. & Li, Y. RNase T2 in inflammation and cancer: immunological and biological views. Front. Immunol. 11 (2020).Greulich, W. et al. TLR8 is a sensor of RNase T2 degradation products. Cell 179 (2019).Ostendorf, T. et al. Immune sensing of synthetic, bacterial, and protozoan RNA by toll-like receptor 8 requires coordinated processing by RNase T2 and RNase 2. Immunity 52 (2020).Burnstock, G. & Kennedy, C. P2X receptors in health and disease. Adv. Pharmacol. (San Diego, Calif.) 61 (2011).Metzger, M. W. et al. Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. Purinergic Signal. 13, 153–170 (2017).Article 
PubMed 

Google Scholar 
He, Y., Taylor, N., Fourgeaud, L. & Bhattacharya, A. The role of microglial P2X7: modulation of cell death and cytokine release. J. Neuroinflamm. 14 (2017).Liu, T. W., Chen, C. M. & Chang, K. H. Biomarker of neuroinflammation in Parkinson’s disease. Int. J. Mol. Sci. 23 (2022).Marcellino, D. et al. On the role of P2X(7) receptors in dopamine nerve cell degeneration in a rat model of Parkinson’s disease: studies with the P2X(7) receptor antagonist A-438079. J. Neural Transm. (Vienna, Austria: 1996) 117 (2010).Yu, Y. et al. Cellular localization of P2X7 receptor mRNA in the rat brain. Brain Res. 1194 (2008).Sekar, P., Huang, D. Y., Hsieh, S. L., Chang, S. F. & Lin, W. W. AMPK-dependent and independent actions of P2X7 in regulation of mitochondrial and lysosomal functions in microglia. Cell Commun. Signal. 16, 83 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Lee, H. G., Won, S. M., Gwag, B. J. & Lee, Y. B. Microglial P2X₇ receptor expression is accompanied by neuronal damage in the cerebral cortex of the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Exp. Mol. Med. 43, 7–14 (2011).Article 
PubMed 

Google Scholar 
Sarti, A. C. et al. Mitochondrial P2X7 receptor localization modulates energy metabolism enhancing physical performance. Function (Oxf) 2, zqab005 (2021).Kurvits, L. et al. Transcriptomic profiles in Parkinson’s disease. Exp. Biol. Med. (Maywood) 246, 584–595 (2021).Article 
PubMed 

Google Scholar 
Planken, A. et al. Looking beyond the brain to improve the pathogenic understanding of Parkinson’s disease: implications of whole transcriptome profiling of Patients’ skin. BMC Neurol. 17, 6 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Koks, S., Pfaff, A. L., Bubb, V. J. & Quinn, J. P. Longitudinal intronic RNA-Seq analysis of Parkinson’s disease patients reveals disease-specific nascent transcription. Exp. Biol. Med. (Maywood) 247, 945–957 (2022).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles