Phytochemical composition, in vitro cytotoxicity, and in silico docking properties of Tamarix tetragyna L.

Ezeabara, C. A. & Egenti, M. O. Phytochemical and antimicrobial investigations on various parts of Sida acuta Burm. F. J. Ayurvedic Herb. Med. 4 (2), 71–75 (2018).Article 

Google Scholar 
Ezeabara, C. A. & Nwafulugo, S. N. Comparison of phytochemical and proximate compositions of parts of Cleome ciliata Schum. & Thonn and Cleome viscosa L. World J. Biomed. Pharm. Sci. 1 (1), 1–5 (2015).
Google Scholar 
Aurélie, R. L. et al. Antimicrobial activity of Albizia tulearensis, an endemic Fabaceae from Madagascar. World J. Biol. Pharm. Health Sci. 2 (3), 30–34 (2020).Article 

Google Scholar 
Samadi, N., Ghaffari, S. M. & Akhani, H. Meiotic behavior, karyotype analyses and pollen viability in species of Tamarix (Tamaricaceae). Willdenowia43 (1), 195–203 (2011).Article 

Google Scholar 
Zhang, D., Yin, L. & Pan, B. Biological and ecological characteristics of Tamarix L. and its effect on the ecological environment. Sci. China Ser. Earth Sci. 45 (1), 18–22 (2002).Article 
ADS 

Google Scholar 
Han, Z., Yin, W., Zhang, J., Niu, S. & Ren, L. Active anti-erosion protection strategy in Tamarisk (Tamarix aphylla). Sci. Rep. 3 (1), 1–7 (2013).Article 

Google Scholar 
Whitcraft, C. R., Talley, D. M., Crooks, J. A., Boland, J. & Gaskin, J. Invasion of tamarisk (Tamarix spp.) in a southern California salt marsh. Biol. Inv. 9 (7), 875–879 (2017).Article 

Google Scholar 
Through website; floraveg.eu/taxon/overview/tamarix.Ksouri, R. et al. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem. Toxicol. 47, 2083–2091 (2009).Article 
PubMed 

Google Scholar 
Lee, J. M. et al. Comparison of biological activities of Korean halophytes. Nat. Prod. Sci. 24, 247–252 (2018).Article 

Google Scholar 
Liao, J. et al. Advances in researches on chemical constituents in plants of Coreopsis L. and their pharmacological activities. Drugs Clin. 27, 404–408 (2012).
Google Scholar 
Bahramsoltani, R., Kalkhorani, M., Zaidi, S. M., Farzaei, M. H. & Rahimi, R. The genus Tamarix: traditional uses, phytochemistry, and pharmacology. J. Ethnopharmacol. 246, 112245. https://doi.org/10.1016/j.jep.2019.112245 (2020).Article 
PubMed 

Google Scholar 
Jdey, A. et al. Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. S. Afr. J. Bot. 112, 508–514 (2017).Article 

Google Scholar 
Shakeri, A., Zirak, M. R. & Sahebkar, A. Ellagic acid: a logical lead for drug development. Curr. Pharm. Design 24 (2), 106–122 (2018).Article 

Google Scholar 
Rahman, M. A., Haque, E., Hasanuzzaman, M. & Shahid, I. Z. Anti-nociceptive, anti-inflammatory and antibacterial properties of Tamarix indica roots. Int. J. Pharmacol. 7 (4), 527–531 (2011).Article 

Google Scholar 
Eiman, M. A. M. et al. Antibacterial properties and phytochemical screening of Tamarix nilotica leaves from Sudan. GSC Biol. Pharm. Sci. 3 (2), 6–10 (2018).Article 

Google Scholar 
Boulaaba, M. et al. Anticancer effect of Tamarix gallica extracts on human colon cancer cells involves Erk1/2 and p38 action on G2/M cell cycle arrest. Cytotechnology 65 (6), 927–936 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Riham, O. B., Mohamed, A. E. & Rehab, S. A. Phenolic content, radical scavenging activity and cytotoxicity of Tamarix nilotica (Ehrenb.) bunge growing in Egypt. J. Pharmacogn. Phyto Ther. 5 (3), 47–52 (2013).Sánchez-Hernández, E. et al. Phytochemical profile and activity against fusarium species of Tamarix gallica bark aqueous ammonia extract. Agronomy 13, 496 (2023).Article 

Google Scholar 
Alshehri, S. A. et al. Pharmacological efficacy of Tamarix aphylla: a comprehensive review. Plants (Basel) 11 (1), 118 (2021).MathSciNet 
PubMed 

Google Scholar 
Al-Othman, M., Alkhataf, F. & El-Aziz, A. Antioxidant and chemical constituents of ethyl acetate extract of Tamarix aphylla leaves in Saudi Arabia. Pak. J. Bot. 52 (6), 2257–2261 (2020).Article 

Google Scholar 
Alnuqaydan, A. M. & Rah, B. Comparative assessment of biological activities of different parts of halophytic plant Tamarix articulata ( T. articulata) growing in Saudi Arabia. Saudi J. Biol. Sci. 10, 2586–2592 (2020).Article 

Google Scholar 
Salissou, M. T. et al. Methanolic extract of Tamarix gallica attenuates hyperhomocysteinemia induced AD-like pathology and cognitive impairments in rats. Aging (Albany NY) 10 (11), 3229. https://doi.org/10.18632/aging.101627 (2018).Article 
PubMed 

Google Scholar 
Fellah, O. et al. Anti-proliferative activity of ethyl acetate extracts of grown at different climatic conditions in Algeria. Acta Sci. Nat. 5 (2), 23–31 (2018).Article 

Google Scholar 
Bahramsoltani, R., Rahimi, R. & Farzaei, M. H. Pharmacokinetic interactions of curcuminoids with conventional drugs: a review. J. Ethnopharmacol. 14 (209), 1–2 (2017).Article 

Google Scholar 
Salam, H. S. et al. Potential apoptotic activities of hylocereus undatus peel and pulp extracts in MCF-7 and caco-2 cancer cell lines. Plants 11, 2192. https://doi.org/10.3390/plants11172192 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Darzynkiewicz, Z. Critical aspects in analysis of cellular DNA content. Curr. Protocols Cytometry 56 (7.2), 721–728 (2011).
Google Scholar 
Mahmood, T., Yang, P. C. & Western Blot Technique, theory and trouble shooting. N. Am. J. Med. Sci. 4 (9), 429–434 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Molecular operating environment (MOE). 02 Chemical computing group ULC, 910–1010 Sherbrooke St. W., Montreal, QC H3A 2R7. 2023; Canada. (2022).Abouzied, A. S. et al. Synthesis, molecular docking study, and cytotoxicity evaluation of some novel 1,3,4-Thiadiazole as well as 1,3-Thiazole derivatives bearing a pyridine moiety. Molecules 27, 6368. https://doi.org/10.3390/molecules27196368 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Alghamdi, A. et al. Synthesis, molecular docking, and dynamic simulation targeting main protease (Mpro) of new, thiazole clubbed pyridine scaffolds as potential COVID-19 inhibitors. Curr. Issues Mol. Biol. 45, 1422–1442 (2023).Article 

Google Scholar 
Zhu, H. et al. Targeting p53–MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. J. Hematol. Oncol. 15, 91. (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Mohammed, H. A., Abouzied, A. S., Mohammed, S. A. A. & Khan, R. A. In vivo and in silico analgesic activity of Ficus populifolia extract containing 2-O-β-D-(3′,4′,6′-Tri-acetyl)-glucopyranosyl-3-methyl pentanoic Acid. Int. J. Mol. Sci. 24, 2270. https://doi.org/10.3390/ijms24032270 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Abouzied, A. S. et al. In Silico Pharmacokinetic profiling of the identified bioactive metabolites of Pergularia tomentosa L. latex extract and in vitro cytotoxic activity via the induction of caspase-dependent apoptosis with S-Phase arrest. Pharmaceuticals 15, 1132. https://doi.org/10.3390/ph15091132 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Aroua, L. M. et al. Synthesis, molecular docking, and bioactivity study of novel hybrid benzimidazole urea derivatives: a promising α-Amylase and α-Glucosidase inhibitor candidate with antioxidant activity. Pharmaceutics 15, 457. https://doi.org/10.3390/pharmaceutics15020457 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Al-Humaidi, J. Y. et al. Synthesis, biological evaluation, and molecular docking of novel azolylhydrazonothiazoles as potential anticancer agents. ACS Omega 8, (37), 34044–34058 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
McConkey, B. J., Sobolev, V. & Edelman, M. The performance of current methods in ligand–protein docking. Curr. Sci. 83, 845–856 (2002).
Google Scholar 
Jeong, J. B. & Jeong, H. J. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a] pyrene-treated NIH3T3 cells. Biomed. Biophys. Res. Commun. 400 (4), 752–757 (2010).Article 

Google Scholar 
Kim, D. H. et al. 2-Methoxy-4-vinylphenol attenuates migration of human pancreatic cancer cells via blockade of FAK and AKT signaling. Anticancer Res. 39 (12), 6685–6691 (2019).Article 
PubMed 

Google Scholar 
Betül, G. Antioxidant, antimicrobial activities and fatty acid compositions of wild berberis spp. by different techniques combined with chemometrics (PCA and HCA). Molecules 26 (24), 7448 (2021). https://doi.org/10.3390/molecules26247448Moon, D. O., Kim, M. O., Choi, Y. H. & Kim, G-Y. β-Sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. Cancer Lett. 264, 181–191 (2008).Article 
ADS 
PubMed 

Google Scholar 
Fernando, I. P. S. et al. Apoptotic and antiproliferative effects of stigmast-5-en-3-ol from dendronephthya gigantea on human leukemia HL-60 and human breast cancer MCF-7 cells. Toxicol. Vitro 52, 297–305 (2018).Article 

Google Scholar 
Iyer, D. & Patil, U. K. Efficacy of stigmast-5-en-3β-ol isolated from Salvadora persica L. As antihyperlipidemic and anti-tumor agent: evidence from animal studies. Asian Pac. J. Trop. Dis. 2, S849–S855 (2012).Article 

Google Scholar 
Chimshirova, R. et al. Antimicrobial triterpenoids and Ingol diterpenes from propolis of semi-arid region of Morocco. Molecules 27 (7), 2206. https://doi.org/10.3390/molecules27072206 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Rizvi, S. et al. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ. Med. J. 14 (2), 157–165 (2014).
Google Scholar 
Al-Hadid, K. J., Al-Karablieh, N., Sharab, A. & Mutlak, I. Phytochemical analyses and antibacterial activities of erodium, euphorbia, logoecia and Tamarix species. J. Infect. Dev. Ctries. 13 (11), 1013–1020. https://doi.org/10.3855/jidc.11776 (2019).Article 
PubMed 

Google Scholar 
Alnuqaydan, A. M. & Rah, B. Tamarix articulata Inhibits cell proliferation, promotes cell mechanisms and triggers G0/G1cell cycle arrest arrest in hepatocellular carcinoma cells. Food Technol. Biotechnol. 59 (2), 162–173 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Alafnan, A. et al. Beta elemene induces cytotoxic effects in FLT3 ITD-mutated acute myeloid leukemia by modulating apoptosis. Eur. Rev. Med. Pharmacol. Sci. 27, 3270–3287 (2023).PubMed 

Google Scholar 
Khazaei, S. et al. Cytotoxicity and proapoptotic effects of allium atroviolaceum flower extract by modulating cell cycle arrest and caspase-dependent and p53-independent pathway in breast cancer cell lines. Evid. Based Complement. Altern. Med. 1468957https://doi.org/10.1155/2017/1468957 (2017).Matos, B., Howl, J., Jerónimo, C. & Fardilha, M. The disruption of protein-protein interactions as a therapeutic strategy for prostate cancer. Pharmacol. Res. 161, 105145. https://doi.org/10.1016/j.phrs.2020.105145 (2020).Article 
PubMed 

Google Scholar 
Joerger, A. C. & Fersht, A. R. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu. Rev. Biochem. 85, 375–404 (2016).Article 

Google Scholar 
Lane, D. P. P53, Guardian of the genome. Nature 358, 15–16 (1992).Article 
ADS 
PubMed 

Google Scholar 
Toledo, F. & Wahl, G. M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6, 909–923 (2006).Article 
PubMed 

Google Scholar 
Gonzalez, A. Z. et al. Novel inhibitors of the MDM2-p53 interaction featuring hydrogen bond acceptors as carboxylic acid isosteres. J. Med. Chem. 57, 2963–2988 (2014).Article 
PubMed 

Google Scholar 
Wells, J. A. & Mc-Clendon, C. L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001–1009 (2007).Article 
ADS 
PubMed 

Google Scholar 
Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, D. L. & Vogelstein, B. Amplification of a gene encoding a p53-Associated protein in human sarcomas. Nature 358, 80–83 (1992).Article 
ADS 
PubMed 

Google Scholar 
Chène, P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat. Revision Cancer 3, 102–109 (2003).Article 

Google Scholar 

Hot Topics

Related Articles