Antimicrobial potential of Hippocratea Indica Willd. Acetone Leaf fractions against Salmonella Typhi: an in vitro and in silico study

Chassagne, F., Samarakoon, T., Porras, G., Lyles, J. T., Dettweiler, M., Marquez, L., Salam, A. M., Shabih, S., Farrokhi, D. R., & Quave, C. L. A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Frontiers in Pharmacology, 11. https://www.frontiersin.org/articles/https://doi.org/10.3389/fphar.2020.586548 (2021).Adedeji, A. A., Talabi, I. E., & Oladoja, F. Alternative Medicine in Health Care: Is the Time not Now to Standardize African Phytomedicine to Indigenize Health Care and Create Entrepreneurial Opportunities? In L. Raimi & I. A. Oreagba (Eds.), Medical Entrepreneurship: Trends and Prospects in the Digital Age (pp. 259–273). Springer Nature. https://doi.org/10.1007/978-981-19-6696-5_17 (2023).Lawani, B.T., Bayode, M.T., Sadibo, M.E., Awodire E.F., Aro O.P. & Akindele, A.A. Antibiotic Resistance Microbes’ (ARM) Mechanisms and Management: A Phytomedicinal Approach. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. https://doi.org/10.1007/s40011-023-01525-9 (2023).Ahmad Khan, M. S., & Ahmad, I. Chapter 1 – Herbal Medicine: Current Trends and Future Prospects. In M. S. Ahmad Khan, I. Ahmad, & D. Chattopadhyay (Eds.), New Look to Phytomedicine (pp. 3–13). Academic Press. https://doi.org/10.1016/B978-0-12-814619-4.00001-X (2019).Yuan, H., Ma, Q., Ye, L., & Piao, G. The Traditional Medicine and Modern Medicine from Natural products. Molecules, 21(5), Article 5. https://doi.org/10.3390/molecules21050559 (2016).Syed, K. A., Saluja, T., Cho, H., Hsiao, A., Shaikh, H., Wartel, T. A., Mogasale, V., Lynch, J., Kim, J. H., Excler, J.-L., & Sahastrabuddhe, S. Review on the recent advances on Typhoid Vaccine Development and challenges ahead. Clinical Infectious Diseases, 71(Supplement_2), S141–S150. https://doi.org/10.1093/cid/ciaa504 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meiring, J. E., Shakya, M., Khanam, F., Voysey, M., Phillips, M. T., Tonks, S., Thindwa,D., Darton, T. C., Dongol, S., Karkey, A., Zaman, K., Baker, S., Dolecek, C., Dunstan,S. J., Dougan, G., Holt, K. E., Heyderman, R. S., Qadri, F., Pitzer, V. E., … Pollard,A. J. Burden of enteric fever at three urban sites in Africa and Asia: A multicentre population-based study. The Lancet Global Health, 9(12), e1688–e1696. https://doi.org/10.1016/S2214-109X(21)00370-3 (2021).Saeed, M., Rasool, M. H., Rasheed, F., Saqalein, M., Nisar, M. A., Imran, A. A., Tariq, S., Amir, A., Ikram, A., & Khurshid, M. Extended-spectrum beta-lactamases producing extensively drug-resistant Salmonella Typhi in Punjab, Pakistan. The Journal of Infection in Developing Countries, 14(02), Article 02. https://doi.org/10.3855/jidc.12049 (2020).Shah, S. A. A., Nadeem, M., Syed, S. A., Abidi, S. T. F., Khan, N., Bano, N., Shah, S. A. A., Nadeem, M., Syed, S. A., Abidi, S. T. F., Khan, N., & Bano, N. Antimicrobial sensitivity pattern of Salmonella Typhi: emergence of resistant strains. Cureus, 12(11). https://doi.org/10.7759/cureus.11778 (2020).Procaccianti, M., Motta, A., Giordani, S., Riscassi, S., Guidi, B., Ruffini, M., Maffini, V., Esposito, S., & Dodi, I. First Case of Typhoid Fever due to extensively drug-resistant Salmonella enterica serovar Typhi in Italy. Pathogens, 9(2), 151. https://doi.org/10.3390/pathogens9020151 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
El-Saadony, M. T., Zabermawi, N. M., Zabermawi, N. M., Burollus, M. A., Shafi, M. E., Alagawany, M., Yehia, N., Askar, A. M., Alsafy, S. A., Noreldin, A. E., Khafaga, A. F., Dhama, K., Elnesr, S. S., Elwan, H. A. M., Cerbo, A. D., El-Tarabily, K. A., & Abd El-Hack, M. E. Nutritional aspects and health benefits of Bioactive Plant compounds against Infectious diseases: a review. Food Reviews International, 39(4), 2138–2160. https://doi.org/10.1080/87559129.2021.1944183 (2023).Article 
CAS 

Google Scholar 
Mbuni, Y. M., Wang, S., Mwangi, B. N., Mbari, N. J., Musili, P. M., Walter, N. O., Hu, G., Zhou, Y., & Wang, Q. Medicinal plants and their traditional uses in Local communities around Cherangani Hills, Western Kenya. Plants, 9(3), Article 3. https://doi.org/10.3390/plants9030331 (2020).Sojinu, O. S., Akinloye, D. I., Mosaku, A. M., Adebusuyi, A. T., Oduntan, D., Afolabi, A. E., & Arifalod, M. K. O. CHEMICAL CONSTITUENTS AND AN ANTIMICROBIAL ASSAY OF METHANOL ROOT AND LEAVES EXTRACTS OF Hippocratea indica Willd. Journal of Chemical Society of Nigeria, 47(3), Article 3. https://doi.org/10.46602/jcsn.v67i3.753 (2022).Ogbole, O. O., Ekor, M. N., Oluremi, B. B., Ajaiyeoba, E. O., Gbolade, A. A., Ayoola, M. A., & Adeyemi, A. A. Anti-inflammatory and antimicrobial activities of Hippocratea indica Root Bark and Poga Oleosa Fruits. African Journal of Traditional, Complementary and Alternative Medicines, 4(3), Article 3. https://doi.org/10.4314/ajtcam.v4i3 (2007).Njanje, I., Bagla, V. P., Beseni, B. K., Mbazima, V., Lebogo, K. W., Mampuru, L., & Mokgotho, M. P. Defatting of acetone leaf extract of Acacia karroo (Hayne) enhances its hypoglycaemic potential. BMC Complementary and Alternative Medicine, 17(1), 482. https://doi.org/10.1186/s12906-017-1987-6 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oluyori, A., Olatunji, G. A., Shaw, A. K., Rastogi, P., Sanjeev, M., & Dipak, D. Chromatographic fractionation of an ethanolic extract of peels from Ipomoea batatas Lam for improved anticancer activity. Oncogen Journal, 2(1), 2. https://doi.org/10.35702/onc.10002 (2019).Article 

Google Scholar 
Mombeshora, M., Chi, G. F., & Mukanganyama, S. Antibiofilm Activity of Extract and a compound isolated from Triumfetta welwitschii against Pseudomonas aeruginosa. Biochemistry Research International, 2021, e9946183. https://doi.org/10.1155/2021/9946183 (2021).Article 
CAS 

Google Scholar 
Omosa, L. K., Nchiozem-Ngnitedem, V.-A., Guefack, M.-G. F., Mbaveng, A. T., & Kuete, V. Antibacterial activities of thirteen naturally occuring compounds from two Kenyan medicinal plants: Zanthoxylum Paracanthum (Mildbr). Kokwaro (Rutaceae) and Dracaena usambarensis Engl. (Asparagaceae) against MDR phenotypes. South African Journal of Botany, 151, 756–762. https://doi.org/10.1016/j.sajb.2022.10.050 (2022).Article 
CAS 

Google Scholar 
Owolabi, A., Ndako, J., Owa, S., Oluyori, A., Oludipe, E., & Akinsanola, B. Antibacterial and Phytochemical Potentials of Ficus capensis Leaf Extracts Against Some Pathogenic Bacteria. https://doi.org/10.26538/tjnpr/v6i3.14 (2022).Nigussie, D., Davey, G., Legesse, B. A., Fekadu, A., & Makonnen, E. Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complementary Medicine and Therapies, 21(1), 2. https://doi.org/10.1186/s12906-020-03183-0 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ismail, N. Z., Mohamed, W. A. S., Ab. Rahim, N., Hashim, N. M., Adebayo, I. A., Mohamad Zain, N. N., & Arsad, H. Molecular docking and molecular dynamic simulations of apoptosis proteins with potential anticancer compounds present in Clinacanthus nutans extract using gas chromatography–mass spectrometry. Journal of Biomolecular Structure and Dynamics, 0(0), 1–17. https://doi.org/10.1080/07391102.2022.2101530 (2022).Article 
CAS 

Google Scholar 
Obuotor, T. M., Kolawole, A. O., Apalowo, O. E., & Akamo, A. J. Metabolic profiling, ADME pharmacokinetics, molecular docking studies and antibacterial potential of Phyllantus muellerianus leaves. Advances in Traditional Medicine. https://doi.org/10.1007/s13596-021-00611-5 (2021).Article 
PubMed Central 

Google Scholar 
Daina, A., Michielin, O., & Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Lakhera, S., Devlal, K., Ghosh, A., & Rana, M. In silico investigation of phytoconstituents of medicinal herb ‘Piper Longum’ against SARS-CoV-2 by molecular docking and molecular dynamics analysis. Results in Chemistry, 3, 100199. https://doi.org/10.1016/j.rechem.2021.100199 (2021).Article 
CAS 

Google Scholar 
Yadav, A. R., & Mohite, S. K. ADME Analysis of Phytochemical Constituents of Psidium guajava. Asian Journal of Research in Chemistry, 13(5), 373–375. https://doi.org/10.5958/0974-4150.2020.00070.X (2020).Article 

Google Scholar 
He X, Man VH, Yang W, Lee TS, Wang J. A fast and high-quality charge model for the next generation general AMBER force field. J Chem Phys. 21; 153(11):114502. doi: https://doi.org/10.1063/5.0019056. PMID: 32962378; PMCID: PMC7728379 (2020).Verkhivker GM. Simulating Molecular mechanisms of the MDM2-Mediated Regulatory interactions: a conformational selection model of the MDM2 Lid Dynamics. PLoS ONE 7(7): e40897. doi:https://doi.org/10.1371/journal.pone.0040897 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gao Y, Wei C, Luo L, Tang Y, Yu Y, Li Y, Xing J, Pan X. Membrane-assisted tariquidar access and binding mechanisms of human ATP-binding cassette transporter P-glycoprotein. Frontiers in Molecular Biosciences. 15; https://doi.org/10.3389/fmolb.2024.1364494 (2024).Ghahremanian S, Rashidi MM, Raeisi K, Toghraie D. Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: a structural review. J Mol Liq. 15;354:118901. doi: https://doi.org/10.1016/j.molliq.2022.118901. Epub 2022 Mar 9. PMID: 35309259; PMCID: PMC8916543 (2022).Article 
CAS 

Google Scholar 
Maruyama Y, Igarashi R, Ushiku Y, Mitsutake A. Analysis of protein folding simulation with moving root mean square deviation. Journal of Chemical Information and Modeling. 23;63(5):1529-41https://doi.org/10.1021/acs.jcim.2c01444 (2023).Olajuyigbe, O. O., Adedayo, O., & Coopoosamy, R. M. Antibacterial Activity of Defatted and Nondefatted Methanolic Extracts of Aframomum melegueta K. Schum. Against Multidrug-Resistant Bacteria of Clinical Importance. The Scientific World Journal, 2020, e4808432. https://doi.org/10.1155/2020/4808432 (2020).Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. Phytochemicals: Extraction, isolation, and identification of Bioactive compounds from Plant extracts. Plants, 6(4), Article 4. https://doi.org/10.3390/plants6040042 (2017).McGaw, L. J., & Eloff, J. N. Ethnoveterinary use of southern African plants and scientific evaluation of their medicinal properties. Journal of Ethnopharmacology, 119(3), 559–574. https://doi.org/10.1016/j.jep.2008.06.013 (2008).Article 
CAS 
PubMed 

Google Scholar 
Shuping, D. S. S., & Eloff, J. N. The use of plants to protect plants and food against fungal pathogens: a review. African Journal of Traditional, Complementary and Alternative Medicines, 14(4), Article 4. https://doi.org/10.4314/ajtcam.v14i4 (2017).Porras, G., Chassagne, F., Lyles, J. T., Marquez, L., Dettweiler, M., Salam, A. M., Samarakoon, T., Shabih, S., Farrokhi, D. R., & Quave, C. L. Ethnobotany and the role of Plant Natural products in Antibiotic Drug Discovery. Chemical Reviews, 121(6), 3495–3560. https://doi.org/10.1021/acs.chemrev.0c00922 (2021).Article 
CAS 
PubMed 

Google Scholar 
Netshiluvhi, T. R., & Eloff, J. N. Temperature stress does not affect antimicrobial activity of some South African medicinal plants. South African Journal of Botany, 123, 93–97. https://doi.org/10.1016/j.sajb.2019.01.019 (2019).Article 

Google Scholar 
Olusola-Makinde, O. O., & Bayode, M. T. Comparative antimicrobial study of Vernonia Amygdalina Del. and Lawsonia inermis L. against microorganisms from aqueous milieu. European Journal of Biological Research, 11(3), 283–293. https://doi.org/10.5281/zenodo.4742538 (2021).Article 
CAS 

Google Scholar 
Ongpipattanakul, C., Desormeaux, E. K., DiCaprio, A., van der Donk, W. A., Mitchell, D. A., & Nair, S. K. Mechanism of action of Ribosomally Synthesized and Post-translationally modified peptides. Chemical Reviews, 122(18), 14722–14814. https://doi.org/10.1021/acs.chemrev.2c00210 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, J., Ansari, M. F., & Zhou, C.-H. Identification of Unique Quinazolone Thiazoles as Novel Structural scaffolds for potential gram-negative bacterial conquerors. Journal of Medicinal Chemistry, 64(11), 7630–7645. https://doi.org/10.1021/acs.jmedchem.1c00334 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yao, L., Liao, M., Wang, J.-K., Wang, J., Liu, D., Tu, P.-F., & Zeng, K.-W. Gold nanoparticle-based Photo-Cross-linking Strategy for Cellular Target Identification of Supercomplex Molecular systems. Analytical Chemistry, 94(7), 3180–3187. https://doi.org/10.1021/acs.analchem.1c04652 (2022).Article 
CAS 
PubMed 

Google Scholar 
Dreikorn, K. The role of phytotherapy in treating lower urinary tract symptoms and benign prostatic hyperplasia. World Journal of Urology, 19(6), 426–435. https://doi.org/10.1007/s00345-002-0247-6 (2002).Article 
PubMed 

Google Scholar 
Jena, A. K., Vasisht, K., Sharma, N., Kaur, R., Dhingra, M. S., & Karan, M. Amelioration of testosterone induced benign prostatic hyperplasia by Prunus species. Journal of Ethnopharmacology, 190, 33–45. https://doi.org/10.1016/j.jep.2016.05.052 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sasidharan, S., KP, S., Bhaumik, A., Kanti Das, S., & Nair J, H. Administration of Caesalpinia bonduc seed extracts ameliorates Testosterone-Induced Benign Prostatic Hyperplasia (BPH) in male Wistar rats. Research and Reports in Urology, 14, 225–239. https://doi.org/10.2147/RRU.S365598 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Martínez L. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One. 27;10(3):e0119264. doi: https://doi.org/10.1371/journal.pone.0119264. PMID: 25816325; PMCID: PMC4376797 (2015).Yann Vander Meersche, Gabriel Cretin, Aria Gheeraert, Jean-Christophe Gelly, Tatiana Galochkina, ATLAS: protein flexibility description from atomistic molecular dynamics simulations, nucleic acids Research, volume 52, issue D1, 5 January 2024, Pages D384–D392, https://doi.org/10.1093/nar/gkad1084.Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5), 449–61. https://doi.org/10.1517/17460441.2015.1032936 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles