A benchmark of RNA-seq data normalization methods for transcriptome mapping on human genome-scale metabolic networks

Quinn, T. P., Crowley, T. M. & Richardson, M. F. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods. BMC Bioinforma. 19, 1–15 (2018).Article 

Google Scholar 
Smid, M. et al. Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intrasample comparisons. BMC Bioinforma. 19, 1–13 (2018).Article 

Google Scholar 
Zyprych-Walczak, J. et al. The impact of normalization methods on RNA-Seq data analysis. Biomed Res. Int. 2015, 621690 (2015).Anders, S. & Huber, W. Differential expression analysis for sequence count data. Nat. Preced. 1, 1 (2010).Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1765–1786 (2013).Article 
PubMed 

Google Scholar 
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, P., Piao, Y., Shon, H. S. & Ryu, K. H. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinforma. 16, 1–9 (2015).Article 

Google Scholar 
Zhao, Y. et al. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J. Transl. Med. 19, 1–15 (2021).Article 
CAS 

Google Scholar 
Stupnikov, A. et al. Robustness of differential gene expression analysis of RNA-seq. Comput. Struct. Biotechnol. J. 19, 3470–3481 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Evans, C., Hardin, J. & Stoebel, D. M. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Brief. Bioinform. 19, 776–792 (2018).Article 
CAS 
PubMed 

Google Scholar 
Mo, M. L., Jamshidi, N., Palsson & B, Ø. A genome-scale, constraint-based approach to systems biology of human metabolism. Mol. Biosyst. 3, 598–603 (2007).Article 
CAS 
PubMed 

Google Scholar 
Bordbar, A. & Palsson, B. O. Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J. Intern. Med. 271, 131–141 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sen, P. & Orešič, M. Integrating Omics Data in Genome-Scale Metabolic Modeling: A Methodological Perspective for Precision Medicine. Metabolites 13, 855 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cho, J. S., Gu, C., Han, T. H., Ryu, J. Y. & Lee, S. Y. Reconstruction of context-specific genome-scale metabolic models using multiomics data to study metabolic rewiring. Curr. Opin. Syst. Biol. 15, 1–11 (2019).Article 

Google Scholar 
Machado, D. & Herrgård, M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol. 10, e1003580 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Jamialahmadi, O., Hashemi-Najafabadi, S., Motamedian, E., Romeo, S. & Bagheri, F. A benchmark-driven approach to reconstruct metabolic networks for studying cancer metabolism. PLoS Comput. Biol. 15, e1006936 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Pacheco, M. P., Pfau, T. & Sauter, T. Benchmarking procedures for high-throughput context specific reconstruction algorithms. Front. Physiol. 6, 410 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Vieira, V., Ferreira, J. & Rocha, M. A pipeline for the reconstruction and evaluation of context-specific human metabolic models at a large-scale. PLoS Comput. Biol. 18, e1009294 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Opdam, S. et al. A systematic evaluation of methods for tailoring genome-scale metabolic models. Cell Syst. 4, 318–329 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zur, H., Ruppin, E. & Shlomi, T. iMAT: an integrative metabolic analysis tool. Bioinformatics 26, 3140–3142 (2010).Article 
CAS 
PubMed 

Google Scholar 
Stempler, S., Yizhak, K. & Ruppin, E. Integrating transcriptomics with metabolic modeling predicts biomarkers and drug targets for Alzheimer’s disease. PLoS One 9, e105383 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Varma, V. R. et al. Abnormal brain cholesterol homeostasis in Alzheimer’s disease—a targeted metabolomic and transcriptomic study. NPJ aging Mech. Dis. 7, 1–14 (2021).Article 

Google Scholar 
Cheng, K. et al. Genome-scale metabolic modeling reveals SARS-CoV-2-induced metabolic changes and antiviral targets. Mol. Syst. Biol. 17, e10260 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Katzir, R. et al. The landscape of tiered regulation of breast cancer cell metabolism. Sci. Rep. 9, 17760 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Blazier, A. S. & Papin, J. A. Integration of expression data in genome-scale metabolic network reconstructions. Front. Physiol. 3, 299 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Agren, R. et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8, e1002518 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kishk, A. et al. Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases. Cells 11, 2486 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y., Eddy, J. A. & Price, N. D. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. 6, 1–16 (2012).Article 
CAS 

Google Scholar 
Wang, H. et al. Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proc. Natl Acad. Sci. 118, e2102344118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mucke, L. Alzheimer’s disease. Nature 461, 895–897 (2009).Article 
CAS 
PubMed 

Google Scholar 
Venuta, F. et al. Lung cancer in elderly patients. J. Thorac. Dis. 8, S908 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Cancer Genome Atlas, R. N. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543 (2014).Podcasy, J. L. & Epperson, C. N. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin. Neurosci. 18, 437–446 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Tammemagi, C. M., Neslund-Dudas, C., Simoff, M. & Kvale, P. In lung cancer patients, age, race-ethnicity, gender and smoking predict adverse comorbidity, which in turn predicts treatment and survival. J. Clin. Epidemiol. 57, 597–609 (2004).Article 
PubMed 

Google Scholar 
Stapelfeld, C., Dammann, C. & Maser, E. Sex-specificity in lung cancer risk. Int. J. Cancer 146, 2376–2382 (2020).Article 
CAS 
PubMed 

Google Scholar 
Merchant, J. P. et al. Predictive network analysis identifies JMJD6 and other potential key drivers in Alzheimer’s disease. Commun. Biol. 6, 503 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Lynch, M. T. et al. Evaluating genomic signatures of aging in brain tissue as it relates to Alzheimer’s disease. Sci. Rep. 13, 14747 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Posma, J. M. et al. Optimized Phenotypic Biomarker Discovery and Confounder Elimination via Covariate-Adjusted Projection to Latent Structures from Metabolic Spectroscopy Data. J. Proteome Res. 17, 1586–1595 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Radkiewicz, C. et al. Sex and survival in non-small cell lung cancer: A nationwide cohort study. PLoS One 14, e0219206 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Raškevičius, V. et al. Genome scale metabolic models as tools for drug design and personalized medicine. PLoS One 13, e0190636 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Barata, T., Vieira, V., Rodrigues, R., das Neves, R. P. & Rocha, M. Reconstruction of tissue-specific genome-scale metabolic models for human cancer stem cells. Comput. Biol. Med. 142, 105177 (2022).Article 
CAS 
PubMed 

Google Scholar 
Baloni, P. et al. Metabolic network analysis reveals altered bile acid synthesis and metabolism in Alzheimer’s disease. Cell Reports Med. 1, 8 (2020).Vlassis, N., Pacheco, M. P. & Sauter, T. Fast reconstruction of compact context-specific metabolic network models. PLoS Comput. Biol. 10, e1003424 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Ramon, C. & Stelling, J. Functional comparison of metabolic networks across species. Nat. Commun. 14, 1699 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Choi, S. H. et al. Evaluation of logistic regression models and effect of covariates for case–control study in rna-seq analysis. BMC Bioinforma. 18, 1–13 (2017).Article 

Google Scholar 
Düz, E. & Çakir, T. Effect of RNA-Seq data normalization on protein interactome mapping for Alzheimer’s disease. Comput. Biol. Chem. 109, 108028 (2024).Article 
PubMed 

Google Scholar 
Corchete, L. A. et al. Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Sci. Rep. 10, 19737 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maza, E., Frasse, P., Senin, P., Bouzayen, M. & Zouine, M. Comparison of normalization methods for differential gene expression analysis in RNA-Seq experiments: a matter of relative size of studied transcriptomes. Commun. \ Integr. Biol. 6, e25849 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
De Jager, P. L. et al. A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research. Sci. data 5, 1–13 (2018).Article 

Google Scholar 
Bioinformatics, B. FastQC: a quality control tool for high throughput sequence data. (Cambridge, UK Babraham Inst., 2011).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article 
CAS 
PubMed 

Google Scholar 
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47, D766–D773 (2019).Article 
CAS 
PubMed 

Google Scholar 
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Article 
CAS 
PubMed 

Google Scholar 
Weinstein, J. N. et al. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 44, e71–(2016).Article 
PubMed 

Google Scholar 
Abrams, Z. B., Johnson, T. S., Huang, K., Payne, P. R. O. & Coombes, K. A protocol to evaluate RNA sequencing normalization methods. BMC Bioinforma. 20, 1–7 (2019).Article 
CAS 

Google Scholar 
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).Article 
CAS 
PubMed 

Google Scholar 
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Robinson, J. L. et al. An atlas of human metabolism. Sci. Signal. 13, eaaz1482 (2020).Lüleci, H. B., Uzuner, D., Çakır, T. & Thambisetty, M. Computational Approaches to Assess Abnormal Metabolism in Alzheimer’s Disease Using Transcriptomics. Methods Mol. Biol. 2561, 173–189 (Springer, 2023).Shlomi, T., Cabili, M. N., Herrgård, M. J., Palsson, B. Ø. & Ruppin, E. Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26, 1003–1010 (2008).Article 
CAS 
PubMed 

Google Scholar 
Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0. Nat. Protoc. 14, 639–702 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, H. et al. RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput. Biol. 14, e1006541 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Fisher, R. A. The genetical theory of natural selection. (Рипол Классик, 1958).Xie, Z. et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 1, 1–51 (2021).Article 

Google Scholar 
Piñero, J. et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 45, D833–D839 (2017).Article 
PubMed 

Google Scholar 
Ceylan, B., Düz, E. & Çakir, T. Personalized Protein ‑ Protein Interaction Networks Towards Unraveling the Molecular Mechanisms of Alzheimer ’ s Disease. Mol. Neurobiol. https://doi.org/10.1007/s12035-023-03690-4 (2023).Li, C., Long, Q., Zhang, D., Li, J. & Zhang, X. Identification of a four-gene panel predicting overall survival for lung adenocarcinoma. BMC Cancer 20, 1–16 (2020).Article 

Google Scholar 
He, L., Chen, J., Xu, F. & Li, J. Prognostic Implication of a Metabolism-Associated Gene Signature in Lung Adenocarcinoma. Mol. Ther. – Oncolytics 19, 265–277 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Morikawa, K. et al. A Prospective Validation Study of Lung Cancer Gene Panel Testing Using Cytological Specimens. Cancers. 14, 3784 (2022).Liu, Y., Zhao, M. & Qu, H. A Database of Lung Cancer-Related Genes for the Identification of Subtype-Specific Prognostic Biomarkers. Biology. 12, 357 (2023).Herbst, R. S., Morgensztern, D. & Boshoff, C. The biology and management of non-small cell lung cancer. Nature 553, 446–454 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Oxf. Univ. Press 28, 27–30 (2000).CAS 

Google Scholar 
Niwattanakul, S., Singthongchai, J., Naenudorn, E. & Wanapu, S. Using of Jaccard coefficient for keywords similarity. In Proceedings of the international multiconference of engineers and computer scientists 1, 380–384 (2013).

Hot Topics

Related Articles