A structurally informed human protein–protein interactome reveals proteome-wide perturbations caused by disease mutations

Nussinov, R., Jang, H., Nir, G., Tsai, C. J. & Cheng, F. Open structural data in precision medicine. Annu. Rev. Biomed. Data Sci. 5, 95–117 (2022).Article 
PubMed 

Google Scholar 
Braberg, H., Echeverria, I., Kaake, R. M., Sali, A. & Krogan, N. J. From systems to structure—using genetic data to model protein structures. Nat. Rev. Genet. 23, 342–354 (2022).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Vidal, M., Cusick, M. E. & Barabási, A.-L. Interactome networks and human disease. Cell 144, 986–998 (2011).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Meyer, M. J. et al. Interactome INSIDER: a structural interactome browser for genomic studies. Nat. Methods 15, 107–114 (2018).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Wang, X. et al. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat. Biotechnol. 30, 159–164 (2012).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Cheng, F. et al. Comprehensive characterization of protein–protein interactions perturbed by disease mutations. Nat. Genet. 53, 342–353 (2021).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Sahni, N. et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161, 647–660 (2015).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Wierbowski, S. D. et al. A 3D structural SARS-CoV-2-human interactome to explore genetic and drug perturbations. Nat. Methods 18, 1477–1488 (2021).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).Gao, M., Nakajima An, D., Parks, J. M. & Skolnick, J. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat. Commun. 13, 1744 (2022).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Burke, D. F. et al. Towards a structurally resolved human protein interaction network. Nat. Struct. Mol. Biol. 30, 216–225 (2023).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Bianchi, F. M., Grattarola, D., Livi, L. & Alippi, C. Graph neural networks with convolutional ARMA filters. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3496–3507 (2022).PubMed 

Google Scholar 
Cho, K. et al. Learning phrase representations using rnn encoder–decoder for statistical machine translation. In Proc. of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1724–1734 (Association for Computational Linguistics, 2014).Zhuang, F. et al. A comprehensive survey on transfer learning. Proc. of the IEEE 109, 43–76 (2021).Article 

Google Scholar 
Krapp, L. F., Abriata, L. A., Cortes Rodriguez, F. & Dal Peraro, M. PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces. Nat. Commun. 14, 2175 (2023).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Tubiana, J., Schneidman-Duhovny, D. & Wolfson, H. J. ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction. Nat. Methods 19, 730–739 (2022).Article 
PubMed 
CAS 

Google Scholar 
Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).Article 
PubMed 
CAS 

Google Scholar 
Sanchez-Garcia, R., Macias, J. R., Sorzano, C. O. S., Carazo, J. M. & Segura, J. BIPSPI+: mining type-specific datasets of protein complexes to improve protein binding site prediction. J. Mol. Biol. 434, 167556 (2022).Article 
PubMed 
CAS 

Google Scholar 
Zeng, M. et al. Protein–protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics 36, 1114–1120 (2020).Article 
PubMed 
CAS 

Google Scholar 
Townshend, R. J. L., Bedi, R., Suriana, P. A. & Dror, R. O. End-to-end learning on 3D protein structure for interface prediction. 33rd Conference on Neural Information Processing Systems. https://proceedings.neurips.cc/paper_files/paper/2019/file/6c7de1f27f7de61a6daddfffbe05c058-Paper.pdf(NeurIPS, 2019).Fout, A., Byrd, J., Shariat, B. & Ben-Hur, A. Protein interface prediction using graph convolutional networks. Advances in Neural Information Processing Systems 30. https://papers.nips.cc/paper_files/paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf (NIPS, 2017).Lensink, M. F. & Wodak, S. J. Score_set: a CAPRI benchmark for scoring protein complexes. Proteins 82, 3163–3169 (2014).Article 
PubMed 
CAS 

Google Scholar 
UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).Article 

Google Scholar 
Das, J. & Yu, H. HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Syst. Biol. 6, 92 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47, D529–D541 (2019).Article 
PubMed 
CAS 

Google Scholar 
Salwinski, L. et al. The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Orchard, S. et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).Article 
PubMed 
CAS 

Google Scholar 
Licata, L. et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 40, D857–D861 (2012).Article 
PubMed 
CAS 

Google Scholar 
Turner, B. et al. iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence. Database 2010, baq023 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Keshava Prasad, T. S. et al. Human protein reference database—2009 update. Nucleic Acids Res. 37, D767–D772 (2009).Article 
PubMed 
CAS 

Google Scholar 
Mewes, H. W. et al. MIPS: curated databases and comprehensive secondary data resources in 2010. Nucleic Acids Res. 39, D220–D224 (2011).Article 
PubMed 
CAS 

Google Scholar 
Nelson, L. & Cox, M. Lehninger Principles of Biochemistry 7th edn (W.H. Freeman, 2017).Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H. & Zehfus, M. H. Hydrophobicity of amino acid residues in globular proteins. Science 229, 834–838 (1985).Article 
PubMed 
CAS 

Google Scholar 
Aftabuddin, M. & Kundu, S. Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophys. J. 93, 225–231 (2007).Article 
PubMed 
CAS 

Google Scholar 
Tsai, C. J., Lin, S. L., Wolfson, H. J. & Nussinov, R. Studies of protein–protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci. 6, 53–64 (1997).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Ansari, S. & Helms, V. Statistical analysis of predominantly transient protein–protein interfaces. Proteins 61, 344–355 (2005).Article 
PubMed 
CAS 

Google Scholar 
Burley, S. K. et al. RCSB Protein Data Bank: celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Protein Sci. 31, 187–208 (2022).Article 
PubMed 
CAS 

Google Scholar 
Wei, X. et al. A massively parallel pipeline to clone DNA variants and examine molecular phenotypes of human disease mutations. PLoS Genet. 10, e1004819 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Xiong, D., Lee, D., Li, L., Zhao, Q. & Yu, H. Implications of disease-related mutations at protein–protein interfaces. Curr. Opin. Struct. Biol. 72, 219–225 (2022).Article 
PubMed 
CAS 

Google Scholar 
Stenson, P. D. et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 136, 665–677 (2017).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).Article 
PubMed 

Google Scholar 
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Zhou, Y. et al. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol. 18, e3000970 (2020).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Plasilova, M. et al. Homozygous missense mutation in the lamin A/C gene causes autosomal recessive Hutchinson–Gilford progeria syndrome. J. Med. Genet. 41, 609–614 (2004).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Favretto, F. et al. The molecular basis of the interaction of cyclophilin A with α-synuclein. Angew. Chem. Int. Ed. 59, 5643–5646 (2020).Article 
CAS 

Google Scholar 
Liu, Q. et al. HIF2A germline–mutation-induced polycythemia in a patient with VHL-associated renal-cell carcinoma. Cancer Biol. Ther. 18, 944–947 (2017).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Tarade, D., Robinson, C. M., Lee, J. E. & Ohh, M. HIF-2α-pVHL complex reveals broad genotype-phenotype correlations in HIF-2α-driven disease. Nat. Commun. 9, 3359 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
V, F. R. L. et al. Three novel EPAS1/HIF2A somatic and germline mutations associated with polycythemia and pheochromocytoma/paraganglioma. Blood 120, 2080 (2012).Article 

Google Scholar 
Chang, K. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).Article 
CAS 

Google Scholar 
Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575 (2022).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Rabara, D. et al. KRAS G13D sensitivity to neurofibromin-mediated GTP hydrolysis. Proc. Natl Acad. Sci. USA 116, 22122–22131 (2019).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Wang, Z. et al. The diverse roles of SPOP in prostate cancer and kidney cancer. Nat. Rev. Urol. 17, 339–350 (2020).Article 
PubMed 
CAS 

Google Scholar 
Song, Y. et al. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol. Cancer 19, 2 (2020).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Xu, J. & Lin, D. I. Oncogenic c-terminal cyclin D1 (CCND1) mutations are enriched in endometrioid endometrial adenocarcinomas. PLoS ONE 13, e0199688 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ryu, D. et al. Alterations in the transcriptional programs of myeloma cells and the microenvironment during extramedullary progression affect proliferation and immune evasion. Clin. Cancer Res. 26, 935–944 (2020).Article 
PubMed 
CAS 

Google Scholar 
Zhang, M. et al. CanProVar 2.0: an updated database of human cancer proteome variation. J. Proteome Res. 16, 421–432 (2017).Article 
PubMed 
CAS 

Google Scholar 
Mészáros, B., Kumar, M., Gibson, T. J., Uyar, B. & Dosztányi, Z. Degrons in cancer. Sci. Signal. 10, eaak9982 (2017).Article 
PubMed 

Google Scholar 
Yang, Q., Zhao, J., Chen, D. & Wang, Y. E3 ubiquitin ligases: styles, structures and functions. Mol. Biomed. 2, 23 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Senft, D., Qi, J. & Ronai, Z. E. A. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer 18, 69–88 (2018).Article 
PubMed 
CAS 

Google Scholar 
Han, Y., Lee, H., Park, J. C. & Yi, G. S. E3Net: a system for exploring E3-mediated regulatory networks of cellular functions. Mol. Cell. Proteomics 11, O111.014076 (2012).Article 
PubMed 

Google Scholar 
Li, Z. et al. UbiNet 2.0: a verified, classified, annotated and updated database of E3 ubiquitin ligase–substrate interactions. Database 2021, baab010 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Mena, E. L. et al. Dimerization quality control ensures neuronal development and survival. Science 362, eaap8236 (2018).Article 
PubMed 

Google Scholar 
Wang, Q. et al. Alterations of anaphase-promoting complex genes in human colon cancer cells. Oncogene 22, 1486–1490 (2003).Article 
PubMed 
CAS 

Google Scholar 
Yin, Q., Wyatt, C. J., Han, T., Smalley, K. S. M. & Wan, L. ITCH as a potential therapeutic target in human cancers. Semin. Cancer Biol. 67, 117–130 (2020).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Li, L. et al. CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription. Mol. Cell. Biol. 24, 856–864 (2004).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Tsai, W.-W. et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 468, 927–932 (2010).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Lv, D. et al. TRIM24 is an oncogenic transcriptional co-activator of STAT3 in glioblastoma. Nat. Commun. 8, 1454 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).Article 
PubMed 
CAS 

Google Scholar 
Furukawa, M. & Xiong, Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 25, 162–171 (2005).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Fukutomi, T., Takagi, K., Mizushima, T., Ohuchi, N. & Yamamoto, M. Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex Degron and Keap1. Mol. Cell. Biol. 34, 832–846 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).Article 
PubMed 
CAS 

Google Scholar 
Vasaikar, S. et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177, 1035–1049.e19 (2019).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Abi-Habib, R. J. et al. BRAF status and mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 activity indicate sensitivity of melanoma cells to anthrax lethal toxin. Mol. Cancer Ther. 4, 1303–1310 (2005).Article 
PubMed 
CAS 

Google Scholar 
Roberts, P. J. & Der, C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291–3310 (2007).Article 
PubMed 
CAS 

Google Scholar 
Endres, N. F. et al. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152, 543–556 (2013).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Lu, C. F. et al. Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor. Mol. Cell. Biol. 30, 5432–5443 (2010).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Liang, S. I. et al. Phosphorylated EGFR dimers are not sufficient to activate ras. Cell Rep. 22, 2593–2600 (2018).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Bishayee, A., Beguinot, L. & Bishayee, S. Phosphorylation of tyrosine 992, 1068, and 1086 is required for conformational change of the human epidermal growth factor receptor C-terminal tail. Mol. Biol. Cell. 10, 525–536 (1999).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Siegelin, M. D. & Borczuk, A. C. Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab Invest. 94, 129–137 (2014).Article 
PubMed 
CAS 

Google Scholar 
Hillig, R. C. et al. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS–SOS1 interaction. Proc. Natl Acad. Sci. USA 116, 2551–2560 (2019).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
You, X. et al. Unique dependence on Sos1 in KrasG12D-induced leukemogenesis. Blood 132, 2575–2579 (2018).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Hofmann, M. H. et al. Trial in process: phase 1 studies of BI 1701963, a SOS1::KRAS inhibitor, in combination with MEK inhibitors, irreversible KRASG12C inhibitors or irinotecan. Cancer Res. 81, CT210 (2021).Article 

Google Scholar 
Huijberts, S. C. F. A. et al. Phase I study of lapatinib plus trametinib in patients with KRAS-mutant colorectal, non-small cell lung, and pancreatic cancer. Cancer Chemother. Pharmacol. 85, 917–930 (2020).Article 
PubMed 
CAS 

Google Scholar 
Cho, M. et al. A phase I clinical trial of binimetinib in combination with FOLFOX in patients with advanced metastatic colorectal cancer who failed prior standard therapy. Oncotarget 8, 79750–79760 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Hofmann, M. H. et al. BI-3406, a potent and selective SOS1–KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 11, 142–157 (2021).Article 
PubMed 
CAS 

Google Scholar 
Liu, F., Yang, X., Geng, M. & Huang, M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm. Sin. B 8, 552–562 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Tran, T. H. et al. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. Nat. Commun. 12, 1176 (2021).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Patelli, G. et al. Strategies to tackle RAS-mutated metastatic colorectal cancer. ESMO Open 6, 100156 (2021).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Li, Z.-N., Zhao, L., Yu, L.-F. & Wei, M.-J. BRAF and KRAS mutations in metastatic colorectal cancer: future perspectives for personalized therapy. Gastroenterol. Rep. 8, 192–205 (2020).Article 

Google Scholar 
Corcoran, R. B. et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAFV600E-mutant colorectal cancer. Cancer Discov. 8, 428–443 (2018).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Lin, Q. et al. The association between BRAF mutation class and clinical features in BRAF-mutant Chinese non-small cell lung cancer patients. J. Transl. Med. 17, 298 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Caunt, C. J., Sale, M. J., Smith, P. D. & Cook, S. J. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat. Rev. Cancer 15, 577–592 (2015).Article 
PubMed 
CAS 

Google Scholar 
Huang, K. L. et al. Regulated phosphosignaling associated with breast cancer subtypes and druggability. Mol. Cell. Proteomics 18, 1630–1650 (2019).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).Article 
PubMed 
CAS 

Google Scholar 
Luck, K. et al. A reference map of the human binary protein interactome. Nature 580, 402–408 (2020).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Huttlin, E. L. et al. The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425–440 (2015).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Cho, N. H. et al. OpenCell: endogenous tagging for the cartography of human cellular organization. Science 375, eabi6983 (2022).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Petrey, D., Zhao, H., Trudeau, S. J., Murray, D. & Honig, B. PrePPI: a structure informed proteome-wide database of protein–protein interactions. J. Mol. Biol. 435, 168052 (2023).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Gao, Z. et al. Hierarchical graph learning for protein–protein interaction. Nat. Commun. 14, 1093 (2023).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Pieper, U. et al. ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 42, D336–D346 (2014).Article 
PubMed 
CAS 

Google Scholar 
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).Article 
PubMed 
CAS 

Google Scholar 
Su, J. et al. SaProt: protein language modeling with structure-aware vocabulary. The Twelfth International Conference on Learning Representations. https://openreview.net/pdf?id=6MRm3G4NiU (ICLR, 2023).Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Gary, W. B. et al. The Alzheimer’s disease sequencing project: study design and sample selection. Neurol. Genet. 3, e194 (2017).Article 

Google Scholar 
Mosca, R., Céol, A. & Aloy, P. Interactome3D: adding structural details to protein networks. Nat. Methods 10, 47–53 (2013).Article 
PubMed 
CAS 

Google Scholar 
Velankar, S. et al. SIFTS: structure integration with function, taxonomy and sequences resource. Nucleic Acids Res. 41, D483–D489 (2013).Article 
PubMed 
CAS 

Google Scholar 
Lee, B. & Richards, F. M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).Article 
PubMed 
CAS 

Google Scholar 
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).Article 
PubMed 
CAS 

Google Scholar 
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Pierce, B. G. et al. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30, 1771–1773 (2014).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Scardapane, S., Van Vaerenbergh, S., Totaro, S. & Uncini, A. Kafnets: kernel-based non-parametric activation functions for neural networks. Neural Netw. 110, 19–32 (2019).Article 
PubMed 

Google Scholar 
Li, Y., Golding, G. B. & Ilie, L. DELPHI: accurate deep ensemble model for protein interaction sites prediction. Bioinformatics 37, 896–904 (2021).Article 
PubMed 
CAS 

Google Scholar 
Zhang, J. & Kurgan, L. SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences. Bioinformatics 35, i343–i353 (2019).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Zhang, B., Li, J., Quan, L., Chen, Y. & Lü, Q. Sequence-based prediction of protein–protein interaction sites by simplified long short-term memory network. Neurocomputing 357, 86–100 (2019).Article 

Google Scholar 
Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).Article 
PubMed 
CAS 

Google Scholar 
Walhout, A. J. M. & Vidal, M. High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods 24, 297–306 (2001).Article 
PubMed 
CAS 

Google Scholar 
McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Dominguez, C., Boelens, R. & Bonvin, A. M. J. J. HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).Article 
PubMed 
CAS 

Google Scholar 
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Wu, E. L. et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014).Article 
PubMed 
PubMed Central 
CAS 

Google Scholar 
Xiong, D., Lee, D. & Liang, S. GitHub code repository for PIONEER. https://github.com/hyulab/PIONEER (2024).

Hot Topics

Related Articles