Deep learning prediction of ribosome profiling with Translatomer reveals translational regulation and interprets disease variants

Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).Article 

Google Scholar 
Fortelny, N., Overall, C. M., Pavlidis, P. & Freue, G. V. C. Can we predict protein from mRNA levels? Nature 547, E19–E20 (2017).Article 

Google Scholar 
Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).Article 

Google Scholar 
Franks, A., Airoldi, E. & Slavov, N. Post-transcriptional regulation across human tissues. PLoS Comput. Biol. 13, e1005535 (2017).Article 

Google Scholar 
Edfors, F. et al. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol. Syst. Biol. 12, 883 (2016).Article 

Google Scholar 
Ward, L. D. & Kellis, M. Interpreting noncoding genetic variation in complex traits and human disease. Nat. Biotechnol. 30, 1095–1106 (2012).Article 

Google Scholar 
Tak, Y. G. & Farnham, P. J. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin 8, 57 (2015).Article 

Google Scholar 
Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).Article 

Google Scholar 
Kerimov, N. et al. A compendium of uniformly processed human gene expression and splicing quantitative trait loci. Nat. Genet. 53, 1290–1299 (2021).Article 

Google Scholar 
GTEx Consortium The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).Article 

Google Scholar 
Connally, N. J. et al. The missing link between genetic association and regulatory function. eLife 11, e74970 (2022).Article 

Google Scholar 
Huang, D. et al. QTLbase2: an enhanced catalog of human quantitative trait loci on extensive molecular phenotypes. Nucleic Acids Res. 51, D1122–D1128 (2023).Article 

Google Scholar 
Alberts, B. et al. Molecular Biology of the Cell (Garland Science, 2002).Khan, Z. et al. Primate transcript and protein expression levels evolve under compensatory selection pressures. Science 342, 1100–1104 (2013).Article 

Google Scholar 
Battle, A. et al. Genomic variation. Impact of regulatory variation from RNA to protein. Science 347, 664–667 (2015).Article 

Google Scholar 
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).Article 

Google Scholar 
Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).Article 

Google Scholar 
Witte, F. et al. A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion. Genome Biol. 22, 191 (2021).Article 

Google Scholar 
Li, Q. et al. Genome-wide search for exonic variants affecting translational efficiency. Nat. Commun. 4, 2260 (2013).Article 

Google Scholar 
Long, E., Wan, P., Chen, Q., Lu, Z. & Choi, J. From function to translation: decoding genetic susceptibility to human diseases via artificial intelligence. Cell Genomics 3, 100320 (2023).Article 

Google Scholar 
Eraslan, G., Avsec, Ž., Gagneur, J. & Theis, F. J. Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet. 20, 389–403 (2019).Article 

Google Scholar 
Huang, X., Rymbekova, A., Dolgova, O., Lao, O. & Kuhlwilm, M. Harnessing deep learning for population genetic inference. Nat. Rev. Genet. 25, 61–78 (2023).Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).Article 

Google Scholar 
Cui, H., Hu, H., Zeng, J. & Chen, T. DeepShape: estimating isoform-level ribosome abundance and distribution with Ribo-seq data. BMC Bioinf. 20, 678 (2019).Article 

Google Scholar 
Hu, H. et al. Riboexp: an interpretable reinforcement learning framework for ribosome density modeling. Brief. Bioinform. 22, bbaa412 (2021).Article 

Google Scholar 
Tunney, R. et al. Accurate design of translational output by a neural network model of ribosome distribution. Nat. Struct. Mol. Biol. 25, 577–582 (2018).Article 

Google Scholar 
Shao, B. et al. Riboformer: a deep learning framework for predicting context-dependent translation dynamics. Nat. Commun. 15, 2011 (2024).Article 

Google Scholar 
Tian, T., Li, S., Lang, P., Zhao, D. & Zeng, J. Full-length ribosome density prediction by a multi-input and multi-output model. PLoS Comput. Biol. 17, e1008842 (2021).Article 

Google Scholar 
Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017).Imataka, H., Gradi, A. & Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17, 7480–7489 (1998).Article 

Google Scholar 
Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140 (1998).Article 

Google Scholar 
Tarun, S. Z. Jr & Sachs, A. B. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15, 7168–7177 (1996).Article 

Google Scholar 
Castillo Bennett, J., Roggero, C. M., Mancifesta, F. E. & Mayorga, L. S. Calcineurin-mediated dephosphorylation of synaptotagmin VI is necessary for acrosomal exocytosis. J. Biol. Chem. 285, 26269–26278 (2010).Article 

Google Scholar 
Roggero, C. M. et al. Protein kinase C-mediated phosphorylation of the two polybasic regions of synaptotagmin VI regulates their function in acrosomal exocytosis. Dev. Biol. 285, 422–435 (2005).Article 

Google Scholar 
Umezu, T., Yamanouchi, H., Iida, Y., Miura, M. & Tomooka, Y. Follistatin-like-1, a diffusible mesenchymal factor determines the fate of epithelium. Proc. Natl Acad. Sci. USA 107, 4601–4606 (2010).Article 

Google Scholar 
Geng, Y. et al. Follistatin-like 1 (Fstl1) is a bone morphogenetic protein (BMP) 4 signaling antagonist in controlling mouse lung development. Proc. Natl Acad. Sci. USA 108, 7058–7063 (2011).Article 

Google Scholar 
Sun, W. et al. FSTL1 promotes alveolar epithelial cell aging and worsens pulmonary fibrosis by affecting SENP1-mediated DeSUMOylation. Cell Biol. Int. 47, 1716–1727 (2023).Article 

Google Scholar 
Cockman, E., Anderson, P. & Ivanov, P. TOP mRNPs: molecular mechanisms and principles of regulation. Biomolecules 10, 969 (2020).Article 

Google Scholar 
Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem. 267, 6321–6330 (2000).Article 

Google Scholar 
Kozak, M. The scanning model for translation: an update. J. Cell Biol. 108, 229–241 (1989).Article 

Google Scholar 
Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292 (1986).Article 

Google Scholar 
Tuller, T. et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141, 344–354 (2010).Article 

Google Scholar 
Verma, M. et al. A short translational ramp determines the efficiency of protein synthesis. Nat. Commun. 10, 5774 (2019).Article 

Google Scholar 
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).Article 

Google Scholar 
Rhead, B. et al. The UCSC Genome Browser database: update 2010. Nucleic Acids Res. 38, D613–D619 (2010).Article 

Google Scholar 
Sun, L. et al. Predicting dynamic cellular protein-RNA interactions by deep learning using in vivo RNA structures. Cell Res. 31, 495–516 (2021).Article 

Google Scholar 
Siepel, A., Pollard, K. S. & Haussler, D. New methods for detecting lineage-specific selection. in Research in Computational Molecular Biology 190–205 (Springer, 2006).Josephs, E. B., Lee, Y. W., Stinchcombe, J. R. & Wright, S. I. Association mapping reveals the role of purifying selection in the maintenance of genomic variation in gene expression. Proc. Natl Acad. Sci. USA 112, 15390–15395 (2015).Article 

Google Scholar 
Park, C. Y. et al. Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk. Nat. Genet. 53, 166–173 (2021).Article 

Google Scholar 
Landrum, M. J. et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 48, D835–D844 (2020).Article 

Google Scholar 
Turco, E. et al. Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation. Nat. Commun. 12, 5212 (2021).Article 

Google Scholar 
Bjørkøy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).Article 

Google Scholar 
Rubino, E. et al. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 79, 1556–1562 (2012).Article 

Google Scholar 
Ma, S., Attarwala, I. Y. & Xie, X.-Q. SQSTM1/p62: a potential target for neurodegenerative disease. ACS Chem. Neurosci. 10, 2094–2114 (2019).Article 

Google Scholar 
Lin, F. & Worman, H. J. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268, 16321–16326 (1993).Article 

Google Scholar 
Kamat, A. K., Rocchi, M., Smith, D. I. & Miller, O. J. Lamin A/C gene and a related sequence map to human chromosomes 1q12.1-q23 and 10. Somat. Cell Mol. Genet. 19, 203–208 (1993).Article 

Google Scholar 
Tan, J. et al. Cell-type-specific prediction of 3D chromatin organization enables high-throughput in silico genetic screening. Nat. Biotechnol. 41, 1140–1150 (2023).Article 

Google Scholar 
Yin, Q., Wu, M., Liu, Q., Lv, H. & Jiang, R. DeepHistone: a deep learning approach to predicting histone modifications. BMC Genomics 20, 193 (2019).Article 

Google Scholar 
Li, Z. et al. Applications of deep learning in understanding gene regulation. Cell Rep. Methods 3, 100384 (2023).Article 

Google Scholar 
Matsumoto, K., Wassarman, K. M. & Wolffe, A. P. Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J. 17, 2107–2121 (1998).Article 

Google Scholar 
Nott, A., Meislin, S. H. & Moore, M. J. A quantitative analysis of intron effects on mammalian gene expression. RNA 9, 607–617 (2003).Article 

Google Scholar 
Gudikote, J. P., Imam, J. S., Garcia, R. F. & Wilkinson, M. F. RNA splicing promotes translation and RNA surveillance. Nat. Struct. Mol. Biol. 12, 801–809 (2005).Article 

Google Scholar 
Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700 (2009).Article 

Google Scholar 
Shaul, O. How introns enhance gene expression. Int. J. Biochem. Cell Biol. 91, 145–155 (2017).Article 

Google Scholar 
Pamudurti, N. R. et al. Translation of circRNAs. Mol. Cell 66, 9–21.E7 (2017).Article 

Google Scholar 
Jacob, A. G. & Smith, C. W. J. Intron retention as a component of regulated gene expression programs. Hum. Genet. 136, 1043–1057 (2017).Article 

Google Scholar 
Legnini, I. et al. Circ-ZNF609 Is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37.E9 (2017).Article 

Google Scholar 
Sinha, T., Panigrahi, C., Das, D. & Chandra Panda, A. Circular RNA translation, a path to hidden proteome. Wiley Interdiscip. Rev.: RNA 13, e1685 (2022).Article 

Google Scholar 
Hwang, H. J. & Kim, Y. K. Molecular mechanisms of circular RNA translation. Exp. Mol. Med. 56, 1272–1280 (2024).Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518, 365–369 (2015).Article 

Google Scholar 
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 

Google Scholar 
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 

Google Scholar 
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).Article 

Google Scholar 
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article 

Google Scholar 
Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. In Proc. 34th International Conference on Machine Learning 70, 3145–3153 (PMLR, 2017).Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).Article 

Google Scholar 
He, J. Example data and pretrained Translatomer model. Zenodo https://doi.org/10.5281/zenodo.13751434 (2024).He, J. xiongxslab:Translatomer. Zenodo https://doi.org/10.5281/zenodo.13777392 (2024).

Hot Topics

Related Articles