Influence of climate on desert locust (Schistocerca gregaria Forskål, 1775) Plague and migration prediction in tropics

Singh, S. & Mahta, J. Locusts; problem and management in indian condition specially in central region in the middle of the Covid-19 pandemic. Curr. Rese. Agri. Far 1(1), 37–42 (2020).Article 

Google Scholar 
Song, H., Foquet, B., Mariño-Pérez, R. & Woller, D. A. Phylogeny of locusts and grasshoppers reveals complex evolution of density-dependent phenotypic plasticity. Sci. Rep. 7(1), 6606 (2017).Article 
ADS 

Google Scholar 
Symmons, P. M. & Cressman, K. Desert Locust Guidelines: Biology and Behaviour (FAO, 2001).
Google Scholar 
Pener, M. P. & Simpson, S. J. Locust phase polyphenism: An update. Adv. Insect Physiol. 36, 1–272 (2009).Article 

Google Scholar 
Shuang, L. I., Feng, S. Q., Ullah, H., Tu, X. B. & Zhang, Z. H. IPM-Biological and integrated management of desert locust. J. Integr. Agric. 21(12), 3467–3487 (2022).Article 

Google Scholar 
Githae, E.W., & Kuria, E.K. Biological control of desert locust (Schistocerca gregaria Forskål). CABI Rev. (2021).Cressman, K., & Stefanski, R. Weather and desert locusts. FAO and WMO. ISBN: 978-92–5-109426-6 (2016).Salih, A. A., Baraibar, M., Mwangi, K. K. & Artan, G. Climate change and locust outbreak in East Africa. Nat. Clim. Chang. 10(7), 584–585 (2020).Article 
ADS 

Google Scholar 
Kimathi, E. et al. Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa. Sci. Rep. 10(1), 11937 (2020).Article 
ADS 
CAS 

Google Scholar 
Mc Cabe, B., Barboza, S., Basu, M., Hohmann, L., Mwangi, E., Arango, M., Ambani, M. & Abdillahi, H.S. Technical Paper: Desert Locust and Climate: A Weather and Bio-climatic Case Study of Desert Locust Conditions in Northern Kenya. Columbia University, Climate and Society Master’s Programme, ICHA, Kenya. (2021).Pedgley, D. E. & Rainey, R. C. Weather during desert locust plague upsurges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 287(1022), 387–391 (1979).Article 
ADS 

Google Scholar 
White, T. C. R. Weather, food and plagues of locusts. Oecologia 22(2), 119–134 (1976).Article 
ADS 
MathSciNet 
CAS 

Google Scholar 
Despland, E., Collett, M. & Simpson, S. J. Small-scale processes in desert locust swarm formation: How vegetation patterns influence gregarization. Oikos 88(3), 652–662 (2000).Article 
ADS 

Google Scholar 
Veran, S. et al. Modeling spatiotemporal dynamics of outbreaking species: Influence of environment and migration in a locust. Ecology 96(3), 737–748 (2015).Article 

Google Scholar 
Le Gall, M., Overson, R. & Cease, A. A global review on locusts (Orthoptera: Acrididae) and their interactions with livestock grazing practices. Front. Ecol. Evolut. 7, 263 (2019).Article 

Google Scholar 
Guendouz-Benrima, A., & Duranton, J.F. Food choice of the desert locust Schistocerca gregaria (fork., 1775) (Orthoptera, Cyrthacantacridinae) in its solitary phase in Algeria. Metaleptea. (2009).Wang, L. et al. Using long-term earth observation data to reveal the factors contributing to the early 2020 desert locust upsurge and the resulting vegetation loss. Remote Sens. 13(4), 680 (2021).Article 
ADS 

Google Scholar 
Shulov, A. The development of eggs of Schistocerca gregaria (Forskål) in relation to water. Bull. Entomol. Res. 43(3), 469–476 (1952).Article 

Google Scholar 
Shulov, A., & Pener, M.P. Studies on the development of eggs of the desert locust (Schistocerca gregaria Forskål) and its interruption under particular conditions of humidity. In Studies on the development of eggs of the desert locust (Schistocerca gregaria Forskål) and its interruption under particular conditions of humidity., (41). (1963).Maeno, K. & Tanaka, S. The trans-generational phase accumulation in the desert locust: Morphometric changes and extra molting. J. Insect Physiol. 55(11), 1013–1020 (2009).Article 
CAS 

Google Scholar 
Das, A., Das, S. & Haldar, P. Effect of food plants on the growth rate and survivability of Hieroglyphus banian (Fabricius) (Orthoptera: Acridoidea), a major paddy pest in India. Appl. Entomol. Zool. 37(1), 207–212 (2002).Article 

Google Scholar 
Das, A. Strategies to yield high biomass in Acrididae (Orthoptera: Acridea) PhD Thesis, Visva-Bharati University, W.B. India. (2003).Hamilton, A. G. The relation of humidity and temperature to the development of three species of African locusts—Locusta migratoria migratorioides (R. & F.), Schistocerca gregaria (Forsk.), Nomadacris septemfasciata (Serv.). Trans. R. Entomol. Soc. Lond. 85(1), 1–60 (1936).Article 
MathSciNet 

Google Scholar 
Uvarov, B.P. Grasshoppers and locusts. A handbook of general acridology, 1. (1966).Zhang, Z. et al. Periodic temperature-associated drought/flood drives locust plagues in China. Proc. R. Soc. B Biol. Sci. 276(1658), 823–831 (2009).Article 

Google Scholar 
Thomas, N. & Nigam, S. Twentieth-century climate change over Africa: Seasonal hydroclimate trends and Sahara Desert expansion. J. Clim. 31(9), 3349–3370 (2018).Article 
ADS 

Google Scholar 
Popov, G.B. Ecological studies on oviposition by swarms of the Desert Locust (Schistocerca gregaria Forskal) in eastern Africa. Ecological Studies on Oviposition by Swarms of the Desert Locust (Schistocerca gregaria Forskal) in eastern Africa., (31). (1958).Popov, G., Zeller, W., & and Cochemé, J. Ecological Survey Report on Studies in India, Pakistan and Iran During 1963–1964. Plant Production and Protection Division, Food and Agriculture Organization of the United Nations. (1965).Joshi, M. J., Raj, V. P., Solanki, C. B. & Vaishali, V. B. Desert locust (Schistocera gregaria F.) outbreak in Gujarat (India). Agric. Food E-Newslett. 2(6), 691–693 (2020).
Google Scholar 
Jhiknaria, H. Distribution of Desert Locust Schistocerca gregaria in Rajasthan, India and Establishing an Early Warning System for Locust Control in India. (2021).Roessingh, P., Simpson, S. J. & James, S. Analysis of phase-related changes in behaviour of desert locust nymphs. Proc. R. Soc. Lond. Ser. B Biol. Sci. 252(1333), 43–49 (1993).Article 
ADS 

Google Scholar 
Bartel, P., & Muller, J. Horn of Africa natural hazard probability and risk analysis. US Department of State–Humanitarian Information Unit. (2007).Martín-Blázquez, R. & Bakkali, M. Standardization of multivariate regression models for estimation of the gregariousness level of the main pest locust. Entomologia Experimentalis et Applicata 163(1), 9–25 (2017).Article 

Google Scholar 
Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401(6751), 360–363 (1999).Article 
ADS 
CAS 

Google Scholar 
Homberg, U. Sky compass orientation in desert locusts—Evidence from field and laboratory studies. Front. Behav. Neurosci. 9, 346 (2015).Article 

Google Scholar 
Tehrany, M. S., Pradhan, B. & Jebur, M. N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 512, 332–343 (2014).Article 
ADS 

Google Scholar 
Carranza, E. J. M. & Hale, M. Geologically constrained probabilistic mapping of gold potential, Baguio district, Philippines. Nat. Resour. Res. 9(3), 237–253 (2000).Article 

Google Scholar 
Mohammady, M., Pourghasemi, H. R. & Pradhan, B. Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. J. Asian Earth Sci. 61, 221–236 (2012).Article 
ADS 

Google Scholar 
Gayen, A. & Saha, S. Application of weights-of-evidence (WoE) and evidential belief function (EBF) models for the delineation of soil erosion vulnerable zones: A study on Pathro river basin, Jharkhand, India. Model. Earth Syst. Environ. 3(3), 1123–1139 (2017).Article 

Google Scholar 
Neuhäuser, B. & Terhorst, B. Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86(1–2), 12–24 (2007).Article 
ADS 

Google Scholar 
Bonham-Carter, G. F. Geographic information systems for geoscientists-modeling with GIS. Comput. Methods Geosci. 13, 398 (1994).
Google Scholar 
Xu, C. et al. Landslide hazard mapping using GIS and weight of evidence model in Qingshui river watershed of 2008 Wenchuan earthquake struck region. J. Earth Sci. 23(1), 97–120 (2012).Article 

Google Scholar 
Regmi, A. D. et al. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab. J. Geosci. 7(2), 725–742 (2014).Article 

Google Scholar 
Zhang, G. et al. Landslide susceptibility evaluation integrating weight of evidence model and InSAR results, west of Hubei Province, China. Egypt. J. Remote Sens. Space Sci. 26(1), 95–106 (2023).
Google Scholar 
Gayen, A., Saha, S. & Pourghasemi, H. R. Soil erosion assessment using RUSLE model and its validation by FR probability model. Geocarto Int. 35(15), 1750–1768 (2020).Article 
ADS 

Google Scholar 
Manap, M. A. et al. Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab. J. Geosci. 7(2), 711–724 (2014).Article 

Google Scholar 
Elvis, B. W. W., Arsène, M., Théophile, N. M., Bruno, K. M. E. & Olivier, O. A. Integration of shannon entropy (SE), frequency ratio (FR) and analytical hierarchy process (AHP) in GIS for suitable groundwater potential zones targeting in the Yoyo river basin, Méiganga area, Adamawa Cameroon. J. Hydrol. Reg. Stud. 39, 100997 (2022).Article 

Google Scholar 
Li, L., Nahayo, L., Habiyaremye, G. & Christophe, M. Applicability and performance of statistical index, certain factor and frequency ratio models in mapping landslides susceptibility in Rwanda. Geocarto Int. 37(2), 638–656 (2022).Article 
ADS 

Google Scholar 
Mao, Z., Shi, S., Li, H., Zhong, J. & Sun, J. Landslide susceptibility assessment using triangular fuzzy number-analytic hierarchy processing (TFN-AHP), contributing weight (CW) and random forest weighted frequency ratio (RF weighted FR) at the Pengyang county, Northwest China. Environ. Earth Sci. 81(3), 1–33 (2022).Article 
ADS 

Google Scholar 
Lana, J. C., Castro, P. D. T. A. & Lana, C. E. Assessing gully erosion susceptibility and its conditioning factors in southeastern Brazil using machine learning algorithms and bivariate statistical methods: A regional approach. Geomorphology 402, 108159 (2022).Article 

Google Scholar 
Wei, Y. et al. Analysis of gully erosion susceptibility and spatial modelling using a GIS-based approach. Geoderma 420, 115869 (2022).Article 
ADS 

Google Scholar 
Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S. & Rezaei, A. Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Sci. Inform. 8(1), 171–186 (2015).Article 

Google Scholar 
Mallqui, D. C. & Fernandes, R. A. Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques. Appl. Soft Comput. 75, 596–606 (2019).Article 

Google Scholar 
Han, D., Jung, J. & Kwon, S. Comparative study on supervised learning models for productivity forecasting of shale reservoirs based on a data-driven approach. Appl. Sci. 10(4), 1267 (2020).Article 
CAS 

Google Scholar 
Jolliffe, I. T. Principal component analysis (Springer, 2002).
Google Scholar 
Saporta, G., & Keita, N.N. Principal component analysis: Application to statistical process control. In G. Govaert (Ed), Data analysis 1–23 (2009).Gayen, A. & Haque, S. M. Soil erodibility assessment of laterite dominant sub-basin watersheds in the humid tropical region of India. CATENA 213, 106161 (2022).Article 

Google Scholar 
Saha, S., Gogoi, P., Gayen, A. & Paul, G. C. Constructing the machine learning techniques based spatial drought vulnerability index in Karnataka state of India. J. Clean. Prod. 314, 128073 (2021).Article 

Google Scholar 
Pal, S., Paul, S. & Debanshi, S. Identifying sensitivity of factor cluster-based gully erosion susceptibility models. Environ. Sci. Pollut. Res. 29(60), 90964–90983 (2022).Article 

Google Scholar 
Saha, S. et al. Predicting the deforestation probability using the binary logistic regression, random forest, ensemble rotational forest, REPTree: A case study at the Gumani River Basin, India. Sci. Total Environ. 730, 139197 (2020).Article 
CAS 

Google Scholar 
Rasyid, A. R., Bhandary, N. P. & Yatabe, R. Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geo Environ. Disasters 3(1–16), 2016 (2016).
Google Scholar 
Basu, T., Das, A., & Pal, S. Application of geographically weighted principal component analysis and fuzzy approach for unsupervised landslide susceptibility mapping on Gish River Basin, India. Geocarto Int. 1–24. (2020).Wu, R. et al. Predictions based on different climate change scenarios: The habitat of typical locust species is shrinking in Kazakhstan and Xinjiang, China. Insects 13(10), 942 (2022).Article 
CAS 

Google Scholar 
Pearson, K. L. I. I. I. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901).Article 

Google Scholar 
Ding, Q., Chen, W. & Hong, H. Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto Int. 32(6), 619–639 (2017).
Google Scholar 
Falah, F. & Zeinivand, H. Gis-based groundwater potential mapping in khorramabad in lorestan, Iran, using frequency ratio (fr) and weights of evidence (woe) models. Water Resour. 46(5), 679–692 (2019).Article 

Google Scholar 
Redman, A. D. et al. Moving persistence assessments into the 21st century: A role for weight-of-evidence and overall persistence. Integr. Environ. Assess. Manag.18(4), 868–887 (2022).Article 

Google Scholar 
Sarkar, D., Saha, S. & Mondal, P. Modelling agricultural land suitability for vegetable crops farming using RS and GIS in conjunction with bivariate techniques in the Uttar Dinajpur district of Eastern India. Green Technol. Sustain. 1(2), 100022 (2023).Article 

Google Scholar 
Rahmati, O., Haghizadeh, A., Pourghasemi, H. R. & Noormohamadi, F. Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Nat. Hazards 82(2), 1231–1258 (2016).Article 

Google Scholar 
Pradhan, B. & Lee, S. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ. Earth Sci. 60(5), 1037–1054 (2010).Article 
ADS 

Google Scholar 
Regmi, N. R., Giardino, J. R. & Vitek, J. D. Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115(1–2), 172–187 (2010).Article 
ADS 

Google Scholar 
Senanayake, S., Pradhan, B., Huete, A. & Brennan, J. Assessing soil erosion hazards using land-use change and landslide frequency ratio method: A case study of Sabaragamuwa Province, Sri Lanka. Remote Sens. 12(9), 1483 (2020).Article 
ADS 

Google Scholar 
Barbieri, G., & Cambuli, P. The weight of evidence statistical method in landslide susceptibility mapping of the Rio Pardu Valley (Sardinia, Italy). In 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings 2658–2664 (2009).Kumar, P.S., Shukla, G.O.P.A.L., Panwar, P.A.N.K.A.J. , &Chakravarty, S.U.M.I.T., Locust’s plague: an emerging threat to India. Curr. Sci, 120(10). (2021).Kennedy, J.S., The migration of the desert locust (Schistocerca gregaria Forsk.). I. The behaviour of swarms. II. A theory of long-range migrations. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci., 163–290. (1951)Saha, A., Rahman, S. & Alam, S. Modeling current and future potential distributions of desert locust Schistocerca gregaria (Forskål) under climate change scenarios using MaxEnt. J. Asia-Pac. Biodivers. 14(3), 399–409 (2021).Article 

Google Scholar 
Tang, Q. et al. Potential spread of desert locust Schistocerca gregagia (Orthoptera: Acrididae) under climate change scenarios. Diversity 15(10), 1038 (2023).Article 

Google Scholar 

Hot Topics

Related Articles