Easy and accurate protein structure prediction using ColabFold

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Baek, M. et al. Efficient and accurate prediction of protein structure using RoseTTAFold2. Preprint at bioRxiv https://doi.org/10.1101/2023.05.24.542179 (2023).Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008 (2017).
Google Scholar 
Humphreys, I. R. et al. Computed structures of core eukaryotic protein complexes. Science 374, eabm4805 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).Peng, Z., Wang, W., Han, R., Zhang, F. & Yang, J. Protein structure prediction in the deep learning era. Curr. Opin. Struct. Biol. 77, 102495 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cheng, S. et al. FastFold: Optimizing AlphaFold training and inference on GPU clusters. In Proc. 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming 417–430 (ACM, 2024).Fang, X. et al. A method for multiple-sequence-alignment-free protein structure prediction using a protein language model. Nat. Mach. Intell. 5, 1087–1096 (2023).Article 

Google Scholar 
Ahdritz, G. et al. OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization. Nat. Methods 21, 1514–1524 (2022).Article 

Google Scholar 
Li, Z. et al. Uni-Fold: an open-source platform for developing protein folding models beyond AlphaFold. Preprint at bioRxiv https://doi.org/10.1101/2022.08.04.502811 (2022).Liu, S. et al. PSP: million-level protein sequence dataset for protein structure prediction. Preprint at https://arxiv.org/abs/2206.12240 (2022).Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).Article 
CAS 
PubMed 

Google Scholar 
Lee, J.-W. et al. DeepFold: enhancing protein structure prediction through optimized loss functions, improved template features, and re-optimized energy function. Bioinformatics 39, btad712 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).Article 
CAS 
PubMed 

Google Scholar 
Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, S. et al. Petabase-scale homology search for structure prediction. Cold Spring Harb. Perspect. Biol. 16, a041465 (2024).Article 
PubMed 

Google Scholar 
Abakarova, M., Marquet, C., Rera, M., Rost, B. & Laine, E. Alignment-based protein mutational landscape prediction: doing more with less. Genome Biol. Evol. 15, evad201 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).Article 
CAS 
PubMed 

Google Scholar 
wwPDB consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528 (2019).Article 

Google Scholar 
Liu, J. et al. Enhancing alphafold-multimer-based protein complex structure prediction with MULTICOM in CASP15. Commun. Biol. 6, 1140 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Peng, Z., Wang, W., Wei, H., Li, X. & Yang, J. Improved protein structure prediction with trRosettaX2, AlphaFold2, and optimized MSAs in CASP15. Proteins 91, 1704–1711 (2023).Article 
CAS 
PubMed 

Google Scholar 
Rego, N. & Koes, D. 3Dmol.js: molecular visualization with WebGL. Bioinformatics 31, 1322–1324 (2015).Article 
PubMed 

Google Scholar 
Nomura, K. et al. Bacterial pathogens deliver water- and solute-permeable channels to plant cells. Nature 621, 586–591 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mosalaganti, S. et al. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science 376, eabm9506 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhang, H. et al. Structure of human glycosylphosphatidylinositol transamidase. Nat. Struct. Mol. Biol. 29, 203–209 (2022).Article 
CAS 
PubMed 

Google Scholar 
Del Alamo, D., Sala, D., Mchaourab, H. S. & Meiler, J. Sampling alternative conformational states of transporters and receptors with AlphaFold2. eLife 11, e75751 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Proc. Mach. Learn. Res. 48, 1050–1059 (2016).
Google Scholar 
Wallner, B. AFsample: improving multimer prediction with AlphaFold using massive sampling. Bioinformatics 39, btad573 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wayment-Steele, H. K. et al. Predicting multiple conformations via sequence clustering and AlphaFold2. Nature 625, 832–839 (2024).Article 
CAS 
PubMed 

Google Scholar 
Monteiro da Silva, G., Cui, J. Y., Dalgarno, D. C., Lisi, G. P. & Rubenstein, B. M. High-throughput prediction of protein conformational distributions with subsampled AlphaFold2. Nat. Commun. 15, 2464 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chakravarty, D. & Porter, L. L. AlphaFold2 fails to predict protein fold switching. Protein Sci. 31, e4353 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Saldaño, T. et al. Impact of protein conformational diversity on AlphaFold predictions. Bioinformatics 38, 2742–2748 (2022).Article 
PubMed 

Google Scholar 
Garibsingh, R.-A. A. et al. Rational design of ASCT2 inhibitors using an integrated experimental-computational approach. Proc. Natl Acad. Sci. USA 118, e2104093118 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garaeva, A. A., Guskov, A., Slotboom, D. J. & Paulino, C. A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2. Nat. Commun. 10, 3427 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Wu, R. et al. High-resolution de novo structure prediction from primary sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500999 (2022).Chowdhury, R. et al. Single-sequence protein structure prediction using a language model and deep learning. Nat. Biotechnol. 40, 1617–1623 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, W., Peng, Z. & Yang, J. Single-sequence protein structure prediction using supervised transformer protein language models. Nat. Comput. Sci. 2, 804–814 (2022).Article 
CAS 
PubMed 

Google Scholar 
Bertoline, L. M. F., Lima, A. N., Krieger, J. E. & Teixeira, S. K. Before and after AlphaFold2: an overview of protein structure prediction. Front. Bioinform. 3, 1120370 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).Article 
CAS 
PubMed 

Google Scholar 
Redl, I. et al. ADOPT: intrinsic protein disorder prediction through deep bidirectional transformers. NAR Genom. Bioinform. 5, lqad041 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, J., Schaeffer, R. D., Durham, J., Cong, Q. & Grishin, N. V. DPAM: a domain parser for AlphaFold models. Protein Sci. 32, e4548 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Howe, P. W. Principal components analysis of protein structure ensembles calculated using NMR data. J. Biomol. NMR 20, 61–70 (2001).Article 
CAS 
PubMed 

Google Scholar 
Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).Article 
CAS 
PubMed 

Google Scholar 
Zhang, H. et al. Structure of a human glycosylphosphatidylinositol (GPI) transamidase. Available at https://www.rcsb.org/structure/7W72 (2022).Garibsingh, R.-A. A. et al. ASCT2 in the presence of the inhibitor Lc-BPE (position “up”) in the outward-open conformation. Available at https://www.rcsb.org/structure/7BCQ (2021).Garaeva, A. A., Guskov, A., Slotboom, D. J. & Paulino, C. Inward-open structure of the ASCT2 (SLC1A5) mutant C467R in presence of TBOA. Available at https://www.rcsb.org/structure/6RVX (2019).Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).Article 
CAS 
PubMed 

Google Scholar 
Mariani, V., Biasini, M., Barbato, A. & Schwede, T. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 29, 2722–2728 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
O’Reilly, F. J. et al. Protein complexes in cells by AI-assisted structural proteomics. Mol. Syst. Biol. 19, e11544 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinforma. 20, 473 (2019).Article 

Google Scholar 
Gabler, F. et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinforma. 72, e108 (2020).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles