ML-enhanced peroxisome capacity enables compartmentalization of multienzyme pathway

Heinig, U., Gutensohn, M., Dudareva, N. & Aharoni, A. The challenges of cellular compartmentalization in plant metabolic engineering. Curr. Opin. Biotechnol. 24, 239–246 (2013).Article 
CAS 
PubMed 

Google Scholar 
Lazarow, P. B. Rat liver peroxisomes catalyze the β oxidation of fatty acids. J. Biol. Chem. 253, 1522–1528 (1978).Article 
CAS 
PubMed 

Google Scholar 
Keller, G. A., Gould, S., Deluca, M. & Subramani, S. Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc. Natl Acad. Sci. USA 84, 3264–3268 (1987).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hayashi, M. et al. Functional transformation of plant peroxisomes. Cell Biochem. Biophys. 32, 295–304 (2000).Article 
CAS 
PubMed 

Google Scholar 
Fung, K. & Clayton, C. Recognition of a peroxisomal tripeptide entry signal by the glycosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 45, 261–264 (1991).Article 
CAS 
PubMed 

Google Scholar 
Kiel, J. A. K. W., Hilbrands, R. E., Bovenberg, R. A. L. & Veenhuis, M. Isolation of Penicillium chrysogenum PEX1 and PEX6 encoding AAA proteins involved in peroxisome biogenesis. Appl. Microbiol. Biotechnol. 54, 238–242 (2000).Article 
CAS 
PubMed 

Google Scholar 
Purdue, P. E. & Lazarow, P. B.Peroxisome biogenesis. Annu. Rev. Cell Dev. Biol. 17, 701–752 (2001).Article 
CAS 
PubMed 

Google Scholar 
DeLoache, W. C., Russ, Z. N. & Dueber, J. E. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat. Commun. 7, 11152 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dusséaux, S., Wajn, W. T., Liu, Y., Ignea, C. & Kampranis, S. C. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proc. Natl Acad. Sci. USA 117, 31789–31799 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Grewal, P. S., Samson, J. A., Baker, J. J., Choi, B. & Dueber, J. E. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nat. Chem. Biol. 17, 96–103 (2021).Article 
CAS 
PubMed 

Google Scholar 
Choi, B. H., Kang, H. J., Kim, S. C. & Lee, P. C. Organelle engineering in yeast: enhanced production of protopanaxadiol through manipulation of peroxisome proliferation in Saccharomyces cerevisiae. Microorganisms 10, 650 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sheng, J., Stevens, J. & Feng, X. Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols. Sci. Rep. 6, 26884 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Davies, M. E., Tsyplenkov, D. & Martin, V. J. J. Engineering yeast for de novo synthesis of the insect repellent nepetalactone. ACS Synth. Biol. 10, 2896–2903 (2021).Article 
CAS 
PubMed 

Google Scholar 
Gerke, J. et al. Production of the fragrance geraniol in peroxisomes of a product-tolerant baker’s yeast. Front. Bioeng. Biotechnol. 8, 582052 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Erdmann, R. & Blobel, G. Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J. Cell Biol. 128, 509–523 (1995).Article 
CAS 
PubMed 

Google Scholar 
Deb, R. & Nagotu, S.The nexus between peroxisome abundance and chronological ageing in Saccharomyces cerevisiae. Biogerontology 24, 81–97 (2022).Article 
PubMed 

Google Scholar 
Huber, A., Koch, J., Kragler, F., Brocard, C. & Hartig, A. A subtle interplay between three Pex11 proteins shapes de novo formation and fission of peroxisomes. Traffic 13, 157–167 (2012).Article 
CAS 
PubMed 

Google Scholar 
Krikken, A. M., Veenhuis, M. & van der Klei, I. J. Hansenula polymorpha pex11 cells are affected in peroxisome retention. FEBS J. 276, 1429–1439 (2009).Article 
CAS 
PubMed 

Google Scholar 
Greenhalgh, J. C., Fahlberg, S. A., Pfleger, B. F. & Romero, P. A. Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production. Nat. Commun. 12, 5825 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mukherjee, M., Blair, R. H. & Wang, Z. Q. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production. Metab. Eng. 74, 139–149 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, S. et al. Massive computational acceleration by using neural networks to emulate mechanism-based biological models. Nat. Commun. 10, 4354 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Radivojević, T., Costello, Z., Workman, K. & Garcia Martin, H. A machine learning automated recommendation tool for synthetic biology. Nat. Commun. 11, 4879 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Daniels, K. G. et al. Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning. Science 378, 1194–1200 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luo, N., Wang, S., Lu, J., Ouyang, X. & You, L. Collective colony growth is optimized by branching pattern formation in Pseudomonas aeruginosa. Mol. Syst. Biol. 17, e10089 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl Acad. Sci. USA 116, 8852–8858 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, W. & Viljoen, A. M. Geraniol—a review of a commercially important fragrance material. S. Afr. J. Bot. 76, 643–651 (2010).Article 
CAS 

Google Scholar 
Rubat, S. et al. Increasing the intracellular isoprenoid pool in Saccharomyces cerevisiae by structural fine-tuning of a bifunctional farnesyl diphosphate synthase. FEMS Yeast Res. 17, fox032 (2017).Article 

Google Scholar 
Zhao, J. et al. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microb. Cell Fact. 16, 17 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Ignea, C., Pontini, M., Maffei, M. E., Makris, A. M. & Kampranis, S. C. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth. Biol. 3, 298–306 (2014).Article 
CAS 
PubMed 

Google Scholar 
Lee, M. E., DeLoache, W. C., Cervantes, B. & Dueber, J. E. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 4, 975–986 (2015).Article 
CAS 
PubMed 

Google Scholar 
van Roermund, C. W. T., Tabak, H. F., van den Berg, M., Wanders, R. J. A. & Hettema, E. H. Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J. Cell Biol. 150, 489–498 (2000).Article 
PubMed 
PubMed Central 

Google Scholar 
Tam, Y. Y. C. et al. Pex11-related proteins in peroxisome dynamics: a role for the novel peroxin Pex27p in controlling peroxisome size and number in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 4089–4102 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lin, P. et al. Direct utilization of peroxisomal acetyl-CoA for the synthesis of polyketide compounds in Saccharomyces cerevisiae. ACS Synth. Biol. 12, 1599–1607 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yofe, I. et al. Pex35 is a regulator of peroxisome abundance. J. Cell Sci. 130, 791–804 (2017).Article 
CAS 
PubMed 

Google Scholar 
Rottensteiner, H., Stein, K., Sonnenhol, E. & Erdmann, R. Conserved function of Pex11p and the novel Pex25p and Pex27p in peroxisome biogenesis. Mol. Biol. Cell 14, 4316–4328 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tower, R. J., Fagarasanu, A., Aitchison, J. D. & Rachubinski, R. A. The peroxin Pex34p functions with the Pex11 family of peroxisomal divisional proteins to regulate the peroxisome population in yeast. Mol. Biol. Cell 22, 1727–1738 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoepfner, D., van den Berg, M., Philippsen, P., Tabak, H. F. & Hettema, E. H. A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J. Cell Biol. 155, 979–990 (2001).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wróblewska, J. P. & van der Klei, I. J. Peroxisome maintenance depends on de novo peroxisome formation in yeast mutants defective in peroxisome fission and inheritance. Int. J. Mol. Sci. 20, 4023 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Yuan, W., Veenhuis, M. & van der Klei, I. J. The birth of yeast peroxisomes. Biochim. Biophys. Acta 1863, 902–910 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wittmann, B. J., Yue, Y. & Arnold, F. H. Informed training set design enables efficient machine learning-assisted directed protein evolution. Cell Syst. 12, 1026–1045 (2021).Article 
CAS 
PubMed 

Google Scholar 
Pandi, A. et al. A versatile active learning workflow for optimization of genetic and metabolic networks. Nat. Commun. 13, 3876 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, J. et al. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nat. Commun. 11, 4880 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Peng, B. et al. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metab. Eng. 39, 209–219 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhao, J., Bao, X., Li, C., Shen, Y. & Hou, J. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 100, 4561–4571 (2016).Article 
CAS 
PubMed 

Google Scholar 
Osterberg, M., Kim, H., Warringer, J. & von Heijne, G. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 103, 11148–11153 (2006).Article 
PubMed 
PubMed Central 

Google Scholar 
Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Google Scholar 
Galton, F. Regression towards mediocrity in hereditary stature. J. R. Anthropol. Inst. 15, 246–263 (1886).
Google Scholar 
Cover, T. & Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967).Article 

Google Scholar 
Ho, T. K. Random decision forests. In Proc. 3rd International Conference on Document Analysis and Recognition (eds Kavanaugh, M. & Storms, P.) (IEEE, 1995).Vapnik, V. N. The support vector method. In Proc. Artificial Neural Networks—ICANN’97 (eds Gerstner, W. et al.) (Springer, 1997).Friedman, J. H.Greedy function approximation: a gradient boosting machine. Ann. Statist. 29, 1189–1232 (2001).Article 

Google Scholar 
O’Shea, K. & Nash, R. An introduction to convolutional neural networks. Preprint at https://arXiv.org/abs/1511.08458 (2015).Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).Article 

Google Scholar 
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).Article 
CAS 
PubMed 

Google Scholar 
Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (O’Reilly, 2019).McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arXiv.org/abs/1802.03426 (2020).van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Google Scholar 
Tieleman, T. & Hinton, G. in Neural Networks for Machine Learning Vol. 4, 26–31 (COURSERA, 2012).Baker, J. Engineering yeast peroxisomes to be high capacity for production of geraniol. figshare https://doi.org/10.6084/m9.figshare.26156098.v1 (2024).Shi, J., Wang, S. & Capponi, S. CCCofficial/ML_Pipeline_Yeast_Peroxisome. Zenodo https://doi.org/10.5281/zenodo.13334581 (2024).

Hot Topics

Related Articles