Restoring protein glycosylation with GlycoShape

Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).Article 
CAS 
PubMed 

Google Scholar 
Moremen, K. W., Tiemeyer, M. & Nairn, A. V. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13, 448–462 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stanley, P., Moremen, K. W., Lewis, N. E., Taniguchi, N. & Aebi, M. in Essentials of Glycobiology (eds Varki, A. et al.) Ch. 9 (Cold Spring Harbor Laboratory Press, 2022).Hutter, H. et al. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 287, 989–994 (2000).Article 
CAS 
PubMed 

Google Scholar 
Bloch, J. S. et al. Structure, sequon recognition and mechanism of tryptophan C-mannosyltransferase. Nat. Chem. Biol. 19, 575–584 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hofsteenge, J. et al. New type of linkage between a carbohydrate and a protein: C-glycosylation of a specific tryptophan residue in human RNase Us. Biochemistry 33, 13524–13530 (1994).Article 
CAS 
PubMed 

Google Scholar 
Fadda, E. Molecular simulations of complex carbohydrates and glycoconjugates. Curr. Opin. Chem. Biol. 69, 102175 (2022).Article 
CAS 
PubMed 

Google Scholar 
Woods, R. J. Predicting the structures of glycans, glycoproteins, and their complexes. Chem. Rev. 118, 8005–8024 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Agirre, J., Davies, G., Wilson, K. & Cowtan, K. Carbohydrate anomalies in the PDB. Nat. Chem. Biol. 11, 303 (2015).Article 
CAS 
PubMed 

Google Scholar 
Thaysen-Andersen, M. & Packer, N. H. Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching. Glycobiology 22, 1440–1452 (2012).Article 
CAS 
PubMed 

Google Scholar 
Zacchi, L. F. & Schulz, B. L. N-glycoprotein macroheterogeneity: biological implications and proteomic characterization. Glycoconj. J. 33, 359–376 (2016).Article 
CAS 
PubMed 

Google Scholar 
Čaval, T., Heck, A. J. R. & Reiding, K. R. Meta-heterogeneity: evaluating and describing the diversity in glycosylation between sites on the same glycoprotein. Mol. Cell. Proteom. 20, 100010 (2021).Article 

Google Scholar 
Struwe, W. B. & Robinson, C. V. Relating glycoprotein structural heterogeneity to function—insights from native mass spectrometry. Curr. Opin. Struct. Biol. 58, 241–248 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mathew, C. et al. Glycan–protein interactions determine kinetics of N-glycan remodeling. RSC Chem. Biol. 2, 917–931 (2021).Losfeld, M.-E. et al. Influence of protein/glycan interaction on site-specific glycan heterogeneity. FASEB J. 31, 4623–4635 (2017).Article 
CAS 
PubMed 

Google Scholar 
Cioce, A. et al. Cell-specific bioorthogonal tagging of glycoproteins. Nat. Commun. 13, 6237 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schumann, B. et al. Bump-and-hole engineering identifies specific substrates of glycosyltransferases in living cells. Mol. Cell 78, 824–834.e15 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Anggara, K. et al. Direct observation of glycans bonded to proteins and lipids at the single-molecule level. Science 382, 219–223 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gajdos, L. et al. Neutron crystallography reveals mechanisms used by Pseudomonas aeruginosa for host-cell binding. Nat. Commun. 13, 194 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rangel-Angarita, V. & Malaker, S. A. Mucinomics as the next frontier of mass spectrometry. ACS Chem. Biol. 16, 1866–1883 (2021).Article 
CAS 
PubMed 

Google Scholar 
Bagdonaite, I. et al. Glycoproteomics. Nat. Rev. Methods Prim. 2, 48 (2022).Wu, X. et al. Imaging single glycans. Nature 582, 375–378 (2020).Article 
CAS 
PubMed 

Google Scholar 
Schindler, B. et al. Anomeric memory of the glycosidic bond upon fragmentation and its consequences for carbohydrate sequencing. Nat. Commun. 8, 973 (2017).Lemieux, G. A. & Bertozzi, C. R. Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol. 16, 506–513 (1998).Article 
CAS 
PubMed 

Google Scholar 
Feizi, T. Carbohydrate recognition in the immune system: contributions of neoglycolipid-based microarrays to carbohydrate ligand discovery. Ann. N. Y. Acad. Sci. 1292, 33–44 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rakus, J. F. & Mahal, L. K. New technologies for glycomic analysis: toward a systematic understanding of the glycome. Annu. Rev. Anal. Chem. 4, 367–392 (2011).Article 
CAS 

Google Scholar 
York, W. S. et al. GlyGen: computational and informatics resources for glycoscience. Glycobiology 30, 72–73 (2020).Article 
CAS 
PubMed 

Google Scholar 
Tiemeyer, M. et al. GlyTouCan: an accessible glycan structure repository. Glycobiology 27, 915–919 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Campbell, M. P. et al. UniCarbKB: building a knowledge platform for glycoproteomics. Nucleic Acids Res. 42, D215–D221 (2014).Article 
CAS 
PubMed 

Google Scholar 
Bojar, D. & Lisacek, F. Glycoinformatics in the artificial intelligence era. Chem. Rev. 122, 15971–15988 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Duvaud, S. et al. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 49, W216–W227 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bonnardel, F. et al. UniLectin3D, a database of carbohydrate binding proteins with curated information on 3D structures and interacting ligands. Nucleic Acids Res. 47, D1236–D1244 (2019).Article 
PubMed 

Google Scholar 
Dance, A. Refining the toolkit for sugar analysis. Nature 599, 168–169 (2021).Article 
CAS 
PubMed 

Google Scholar 
Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).Article 
CAS 
PubMed 

Google Scholar 
Jumper, J. et al. Applying and improving AlphaFold at CASP14. Proteins 89, 1711–1721 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alibay, I., Burusco, K. K., Bruce, N. J. & Bryce, R. A. Identification of rare Lewis oligosaccharide conformers in aqueous solution using enhanced sampling molecular dynamics. J. Phys. Chem. B 122, 2462–2474 (2018).Article 
CAS 
PubMed 

Google Scholar 
Alibay, I. & Bryce, R. A. Ring puckering landscapes of glycosaminoglycan-related monosaccharides from molecular dynamics simulations. J. Chem. Inf. Model. 59, 4729–4741 (2019).Article 
CAS 
PubMed 

Google Scholar 
Topin, J. et al. The hidden conformation of Lewis x, a human histo-blood group antigen, is a determinant for recognition by pathogen lectins. ACS Chem. Biol. 11, 2011–2020 (2016).Article 
CAS 
PubMed 

Google Scholar 
Mayes, H. B., Broadbelt, L. J. & Beckham, G. T. How sugars pucker: electronic structure calculations map the kinetic landscape of five biologically paramount monosaccharides and their implications for enzymatic catalysis. J. Am. Chem. Soc. 136, 1008–1022 (2014).Article 
CAS 
PubMed 

Google Scholar 
Perez, S. et al. Glycosaminoglycans: what remains to be deciphered? JACS Au 3, 628–656 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fogarty, C. A. & Fadda, E. Oligomannose N-glycans 3D architecture and its response to the FcγRIIIa structural landscape. J. Phys. Chem. B 125, 2607–2616 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yamada, I. et al. The GlyCosmos Portal: a unified and comprehensive web resource for the glycosciences. Nat. Methods 17, 649–650 (2020).Article 
CAS 
PubMed 

Google Scholar 
Thomès, L., Burkholz, R. & Bojar, D. Glycowork: a Python package for glycan data science and machine learning. Glycobiology 31, 1240–1244 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Aebi, M. N-linked protein glycosylation in the ER. Biochim. Biophys. Acta Mol. Cell Res. 1833, 2430–2437 (2013).Article 
CAS 

Google Scholar 
Casalino, L. et al. Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS Cent. Sci. 6, 1722–1734 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Newby, M. L. et al. Variations within the glycan shield of SARS-CoV-2 impact viral spike dynamics. J. Mol. Biol. 435, 167928 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Riley, N. M., Hebert, A. S., Westphall, M. S. & Coon, J. J. Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat. Commun. 10, 1311 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Agirre, J. et al. Privateer: software for the conformational validation of carbohydrate structures. Nat. Struct. Mol. Biol. 22, 833–834 (2015).Article 
CAS 
PubMed 

Google Scholar 
Castelli, M. et al. How aberrant N-glycosylation can alter protein functionality and ligand binding: an atomistic view. Structure 31, 987–1004.e8 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lo Nigro, C. et al. NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumors: biological evidence and clinical perspectives. Ann. Transl. Med 7, 105 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roberts, J. T. & Barb, A. W. A single amino acid distorts the Fc γ receptor IIIb/CD16b structure upon binding immunoglobulin G1 and reduces affinity relative to CD16a. J. Biol. Chem. 293, 19899–19908 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guillerey, C., Huntington, N. D. & Smyth, M. J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 17, 1025–1036 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wojcik, I. et al. Site-specific glycosylation mapping of Fc gamma receptor IIIb from neutrophils of individual healthy donors. Anal. Chem. 92, 13172–13181 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zeck, A., Pohlentz, G., Schlothauer, T., Peter-Katalinić, J. & Regula, J. T. Cell type-specific and site directed N-glycosylation pattern of FcγRIIIa. J. Proteome Res. 10, 3031–3039 (2011).Article 
CAS 
PubMed 

Google Scholar 
Yagi, H. et al. Site-specific N-glycosylation analysis of soluble Fcγ receptor IIIb in human serum. Sci. Rep. 8, 2719 (2018).Bagdonas, H., Fogarty, C. A., Fadda, E. & Agirre, J. The case for post-predictional modifications in the AlphaFold Protein Structure Database. Nat. Struct. Mol. Biol. 28, 869–870 (2021).Mariani, V., Biasini, M., Barbato, A. & Schwede, T. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 29, 2722–2728 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Akdel, M. et al. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 29, 1056–1067 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Busse-Wicher, M., Wicher, K. B. & Kusche-Gullberg, M. The exostosin family: proteins with many functions. Matrix Biol. 35, 25–33 (2014).Article 
CAS 
PubMed 

Google Scholar 
Xu, D. & Esko, J. D. A Golgi-on-a-chip for glycan synthesis. Nat. Chem. Biol. 5, 612–613 (2009).Article 
CAS 
PubMed 

Google Scholar 
Wilson, L. F. L. et al. The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nat. Commun. 13, 3314 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sammon, D. et al. Molecular mechanism of decision-making in glycosaminoglycan biosynthesis. Nat. Commun. 14, 6425 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Awad, W., Kjellström, S., Svensson Birkedal, G., Mani, K. & Logan, D. T. Structural and biophysical characterization of human EXTL3: domain organization, glycosylation, and solution structure. Biochemistry 57, 1166–1177 (2018).Article 
CAS 
PubMed 

Google Scholar 
Tsai, Y.-X. et al. Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries. Cell 187, 1296–1311.e26 (2024).Article 
CAS 
PubMed 

Google Scholar 
Turupcu, A. & Oostenbrink, C. Modeling of oligosaccharides within glycoproteins from free-energy landscapes. J. Chem. Inf. Model. 57, 2222–2236 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tan, N. Y. et al. Sequence-based protein stabilization in the absence of glycosylation. Nat. Commun. 5, 3099 (2014).Article 
PubMed 

Google Scholar 
Guay, K. P. et al. ER chaperones use a protein folding and quality control glyco-code. Mol. Cell 83, 4524–4537.e5 (2023).Stencel-Baerenwald, J. E., Reiss, K., Reiter, D. M., Stehle, T. & Dermody, T. S. The sweet spot: defining virus–sialic acid interactions. Nat. Rev. Microbiol. 12, 739–749 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Harbison, A. M. et al. Fine-tuning the spike: role of the nature and topology of the glycan shield in the structure and dynamics of the SARS-CoV-2 S. Chem. Sci. 13, 386–395 (2022).Huang, H.-C. et al. Targeting conserved N-glycosylation blocks SARS-CoV-2 variant infection in vitro. eBioMedicine 74, 103712 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, S. et al. Loss of spike N370 glycosylation as an important evolutionary event for the enhanced infectivity of SARS-CoV-2. Cell Res. 32, 315–318 (2022).Kang, L. et al. A selective sweep in the spike gene has driven SARS-CoV-2 human adaptation. Cell 184, 4392–4400.e4 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pritchard, L. K. et al. Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat. Commun. 6, 7479 (2015).Article 
CAS 
PubMed 

Google Scholar 
Brun, J. et al. Assessing antigen structural integrity through glycosylation analysis of the SARS-CoV-2 viral spike. ACS Cent. Sci. 7, 586–593 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Steentoft, C. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32, 1478–1488 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wandall, H. H., Nielsen, M. A. I., King-Smith, S., de Haan, N. & Bagdonaite, I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J. 288, 7183–7212 (2021).Article 
CAS 
PubMed 

Google Scholar 
Malaker, S. A. et al. Revealing the human mucinome. Nat. Commun. 13, 3542 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024)Tsuchiya, S., Matsubara, M., Aoki-Kinoshita, K. F. & Yamada, I. SugarDrawer: a web-based database search tool with editing glycan structures. Molecules 26, 7149 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Minamitake, Y. et al. Structure of recombinant human interleukin 5 produced by Chinese hamster ovary cells. J. Biochem. 107, 292–297 (1990).Article 
CAS 
PubMed 

Google Scholar 
Sehnal, D. et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49, W431–W437 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–8, 27–8 (1996).Article 
PubMed 

Google Scholar 
Cheng, K., Zhou, Y. & Neelamegham, S. DrawGlycan-SNFG: a robust tool to render glycans and glycopeptides with fragmentation information. Glycobiology 27, 200–205 (2017).CAS 
PubMed 

Google Scholar 
Kirschner, K. N. et al. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 29, 622–655 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).Article 
CAS 

Google Scholar 
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).Article 
CAS 
PubMed 

Google Scholar 
Lee, T.-S. et al. GPU-accelerated molecular dynamics and free energy methods in Amber18: performance enhancements and new features. J. Chem. Inf. Model. 58, 2043–2050 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).Article 

Google Scholar 
Bernardi, A., Faller, R., Reith, D. & Kirschner, K. N. ACPYPE update for nonuniform 1–4 scale factors: conversion of the GLYCAM06 force field from AMBER to GROMACS. SoftwareX 10, 100241 (2019).Article 

Google Scholar 
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Google Scholar 
Briggs, D. C. & Hohenester, E. Structural basis for the initiation of glycosaminoglycan biosynthesis by human xylosyltransferase 1. Structure 26, 801–809.e3 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Case, D. A. et al. AmberTools. J. Chem. Inf. Model. 63, 6183–6191 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Biondi, R. M. et al. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J. 21, 4219–4228 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rao, Z. et al. The structure of a Ca2+-binding epidermal growth factor-like domain: its role in protein–protein interactions. Cell 82, 131–141 (1995).Article 
CAS 
PubMed 

Google Scholar 
Takeuchi, H. et al. O-glycosylation modulates the stability of epidermal growth factor-like repeats and thereby regulates Notch trafficking. J. Biol. Chem. 292, 15964–15973 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kuwabara, N. et al. Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan. Proc. Natl Acad. Sci. USA 113, 9280–9285 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Park, S.-J. et al. CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 29, 320–331 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).Article 
CAS 
PubMed 

Google Scholar 
Jämbeck, J. P. M. & Lyubartsev, A. P. An extension and further validation of an all-atomistic force field for biological membranes. J. Chem. Theory Comput. 8, 2938–2948 (2012).Article 
PubMed 

Google Scholar 
Hagberg, A., Swart, P. J. & Schult, D. A. Exploring network structure, dynamics, and function using NetworkX. OSTI.GOV https://www.osti.gov/biblio/960616 (2008).Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).Article 

Google Scholar 
Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).Article 

Google Scholar 
Fadda, E. Restoring protein glycosylation with GlycoShape: code and scripts. Zenodo https://doi.org/10.1101/2023.12.11.571101 (2024).

Hot Topics

Related Articles