kallisto, bustools and kb-python for quantifying bulk, single-cell and single-nucleus RNA-seq

Melsted, P. et al. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat. Biotechnol. 39, 813–818 (2021).Article 
CAS 
PubMed 

Google Scholar 
Tian, L. et al. scPipe: a flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data. PLoS Comput. Biol. 14, e1006361 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).Article 
CAS 
PubMed 

Google Scholar 
Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article 
CAS 
PubMed 

Google Scholar 
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roberts, A. & Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 10, 71–73 (2013).Article 
CAS 
PubMed 

Google Scholar 
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).Article 
CAS 
PubMed 

Google Scholar 
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Article 
CAS 
PubMed 

Google Scholar 
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).Article 
CAS 
PubMed 

Google Scholar 
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).Article 
CAS 

Google Scholar 
Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20, 65 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
He, D. et al. Alevin-fry unlocks rapid, accurate and memory-frugal quantification of single-cell RNA-seq data. Nat. Methods 19, 316–322 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
He, D. & Patro, R. simpleaf: a simple, flexible, and scalable framework for single-cell data processing using alevin-fry. Bioinformatics https://doi.org/10.1093/bioinformatics/btad614 (2023).Kaminow, B., Yunusov, D. & Dobin, A. STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data. Preprint at bioRxiv https://doi.org/10.1101/2021.05.05.442755 (2021).Niebler, S., Müller, A., Hankeln, T. & Schmidt, B. RainDrop: rapid activation matrix computation for droplet-based single-cell RNA-seq reads. BMC Bioinforma. 21, 274 (2020).Article 
CAS 

Google Scholar 
Liao, Y., Raghu, D., Pal, B., Mielke, L. A. & Shi, W. cellCounts: an R function for quantifying 10x Chromium single-cell RNA sequencing data. Bioinformatics https://doi.org/10.1093/bioinformatics/btad439 (2023).Battenberg, K. et al. A flexible cross-platform single-cell data processing pipeline. Nat. Commun. 13, 6847 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Melsted, P., Ntranos, V. & Pachter, L. The barcode, UMI, set format and BUStools. Bioinformatics 35, 4472–4473 (2019).Article 
CAS 
PubMed 

Google Scholar 
Hjörleifsson, K. E. et al. Accurate quantification of single-cell and single-nucleus RNA-seq transcripts using distinguishing flanking k-mers. Preprint at bioRxiv https://doi.org/10.1101/2022.12.02.518832 (2024).Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2011).Article 
PubMed 

Google Scholar 
Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Reese, M. G. et al. Genome annotation assessment in Drosophila melanogaster. Genome Res. 10, 483–501 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Booeshaghi, A. S., Min, K. H. J., Gehring, J. & Pachter, L. Quantifying orthogonal barcodes for sequence census assays. Bioinf. Adv 4, 1 (2024).
Google Scholar 
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Booeshaghi, A. S., Gao, F. & Pachter, L. Assessing the multimodal tradeoff. Preprint at bioRxiv https://doi.org/10.1101/2021.12.08.471788 (2023).Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luebbert, L. et al. Efficient and accurate detection of viral sequences at single-cell resolution reveals putative novel viruses perturbing host gene expression. Preprint at bioRxiv https://doi.org/10.1101/2023.12.11.571168 (2024).Holley, G. & Melsted, P. Bifrost: highly parallel construction and indexing of colored and compacted de Bruijn graphs. Genome Biol. 21, 249 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44, 226–232 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2023).Grindberg, R. V. et al. RNA-sequencing from single nuclei. Proc. Natl Acad. Sci. USA 110, 19802–19807 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Gorin, G., Fang, M., Chari, T. & Pachter, L. RNA velocity unraveled. PLoS Comput. Biol. 18, e1010492 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gorin, G., Vastola, J. J., Fang, M. & Pachter, L. Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments. Nat. Commun. 13, 7620 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Carilli, M., Gorin, G., Choi, Y., Chari, T. & Pachter, L. Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data. Nat. Methods 21, 1466–1469 (2024).Article 
CAS 
PubMed 

Google Scholar 
Gorin, G. & Pachter, L. Distinguishing biophysical stochasticity from technical noise in single-cell RNA sequencing using Monod. Preprint at bioRxiv https://doi.org/10.1101/2022.06.11.495771 (2023).Gorin, G., Vastola, J. J. & Pachter, L. Studying stochastic systems biology of the cell with single-cell genomics data. Cell Syst. https://doi.org/10.1016/j.cels.2023.08.004 (2023).Pool, A.-H., Poldsam, H., Chen, S., Thomson, M. & Oka, Y. Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references. Nat. Methods https://doi.org/10.1038/s41592-023-02003-w (2023).Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).Article 
CAS 
PubMed 

Google Scholar 
Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).Article 
CAS 
PubMed 

Google Scholar 
Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).Article 
CAS 
PubMed 

Google Scholar 
Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).Article 
PubMed 

Google Scholar 
Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017).Article 
CAS 
PubMed 

Google Scholar 
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Einarsson, P. H. & Melsted, P. BUSZ: compressed BUS files. Bioinformatics 39, btad295 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gustafsson, J., Robinson, J., Nielsen, J. & Pachter, L. BUTTERFLY: addressing the pooled amplification paradox with unique molecular identifiers in single-cell RNA-seq. Genome Biol. 22, 174 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol. 17, 77 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Ntranos, V., Kamath, G. M., Zhang, J. M., Pachter, L. & Tse, D. N. Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biol. 17, 112 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Ntranos, V., Yi, L., Melsted, P. & Pachter, L. A discriminative learning approach to differential expression analysis for single-cell RNA-seq. Nat. Methods 16, 163–166 (2019).Article 
CAS 
PubMed 

Google Scholar 
Pachter, L. Models for transcript quantification from RNA-Seq. Preprint at https://doi.org/10.48550/arXiv.1104.3889 (2011).Booeshaghi, A. S., Chen, X. & Pachter, L. A machine-readable specification for genomics assays. Bioinformatics https://doi.org/10.1093/bioinformatics/btae168 (2024).Booeshaghi, A. S., Sullivan, D. K. & Pachter, L. Universal preprocessing of single-cell genomics data. Preprint at bioRxiv https://doi.org/10.1101/2023.09.14.543267 (2023).Luebbert, L. & Pachter, L. Efficient querying of genomic reference databases with gget. Bioinformatics 39, btac836 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gálvez-Merchán, Á., Min, K. H. J., Pachter, L. & Booeshaghi, A. S. Metadata retrieval from sequence databases with ffq. Bioinformatics 39, btac836 (2023).Article 

Google Scholar 
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Alexander Wolf, F. anndata: annotated data. Preprint at bioRxiv https://doi.org/10.1101/2021.12.16.473007 (2021).Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Amezquita, R. A. et al. Orchestrating single-cell analysis with Bioconductor. Nat. Methods 17, 137–145 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 2122 (2016).PubMed 
PubMed Central 

Google Scholar 
McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M. & Vrgoč, D. Foundations of JSON schema. In Proc. 25th International Conference on World Wide Web 263–273 (International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 2016).Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 51, D942–D949 (2023).Article 
CAS 
PubMed 

Google Scholar 
Huntley, M. A. et al. Complex regulation of ADAR-mediated RNA-editing across tissues. BMC Genomics 17, 61 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Sullivan, D. K. & Pachter, L. Flexible parsing and preprocessing of technical sequences with splitcode. Bioinformatics https://doi.org/10.1093/bioinformatics/btae331 (2024).

Hot Topics

Related Articles