Co-regulatory network analysis of the main secondary metabolite (SM) biosynthesis in Crocus sativus L.

Fernández, J.-A. Biology, biotechnology and biomedicine of saffron. Recent Res. Dev. Plant Sci. 2, 127–159 (2004).
Google Scholar 
Mathew, B. The Crocus: A revision of the genus Crocus (Iridaceae) (Timber Press, 1983).
Google Scholar 
Salwee, Y. Saffron as a valuable spice: A comprehensive review. Afr. J. Agric. Res. 8, 234–242 (2013).
Google Scholar 
Bukhari, S. I., Manzoor, M. & Dhar, M. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed. Pharmacother. 98, 733–745. https://doi.org/10.1016/j.biopha.2017.12.090 (2018).Article 
CAS 
PubMed 

Google Scholar 
Khorasanchi, Z. et al. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine 43, 21–27. https://doi.org/10.1016/j.phymed.2018.03.041 (2018).Article 
CAS 
PubMed 

Google Scholar 
Rameshrad, M., Razavi, B. M. & Hosseinzadeh, H. Saffron and its derivatives, crocin, crocetin and safranal: a patent review. Expert Opin. Ther. Pat. 28, 147–165. https://doi.org/10.1080/13543776.2017.1355909 (2018).Article 
CAS 
PubMed 

Google Scholar 
Husaini, A. M., Jan, K. N. & Wani, G. A. Saffron: A potential drug-supplement for severe acute respiratory syndrome coronavirus (COVID) management. Heliyon https://doi.org/10.1016/j.heliyon.2021.e07068 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Lambrianidou, A., Koutsougianni, F., Papapostolou, I. & Dimas, K. Recent advances on the anticancer properties of saffron (Crocus sativus L.) and its major constituents. Molecules 26, 86. https://doi.org/10.3390/molecules26010086 (2021).Article 
CAS 

Google Scholar 
Khorasany, A. R. & Hosseinzadeh, H. Therapeutic effects of saffron (Crocus sativus L.) in digestive disorders: A review. Iran. J. Basic Med. Sci. 19, 455. https://doi.org/10.22038/IJBMS.2016.6929 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Fernández, J.-A. Anticancer properties of saffron Crocus sativus Linn. Adv. Phytomed. 2, 313–330. https://doi.org/10.1016/S1572-557X(05)02018-0 (2006).Article 

Google Scholar 
Karimi, E., Oskoueian, E., Hendra, R. & Jaafar, H. Z. Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 15, 6244–6256. https://doi.org/10.3390/molecules15096244 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alavizadeh, S. H. & Hosseinzadeh, H. Bioactivity assessment and toxicity of crocin: A comprehensive review. Food Chem. Toxicol. 64, 65–80. https://doi.org/10.1016/j.fct.2013.11.016 (2014).Article 
CAS 
PubMed 

Google Scholar 
Castillo, R., Fernández, J.-A. & Gómez-Gómez, L. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol. 139, 674–689. https://doi.org/10.1104/pp.105.067827 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, X., Wang, Z., Dong, J., Wang, M. & Gao, H. Cloning of a 9-cis-epoxycarotenoid dioxygenase gene and the responses of Caragana korshinskii to a variety of abiotic stresses. Genes Gen. Syst. 84, 397–405. https://doi.org/10.1266/ggs.84.397 (2009).Article 
CAS 

Google Scholar 
Rohmer, M., Knani, M., Simonin, P., Sutter, B. & Sahm, H. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 295, 517–524. https://doi.org/10.1042/bj2950517 (1993).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Arigoni, D. et al. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc. Nat. Acad. Sci. 94, 10600–10605. https://doi.org/10.1073/pnas.94.20.106 (1997).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yao, D. et al. Specific upregulation of a cotton phytoene synthase gene produces golden cottonseeds with enhanced provitamin A. Sci. Rep. 8, 1–8. https://doi.org/10.1038/s41598-018-19866-1 (2018).Article 
ADS 
CAS 

Google Scholar 
Britton, G. Overview of carotenoid biosynthesis. Carotenoids 3, 13–147 (1998).
Google Scholar 
Moraga, A. R., Nohales, P. F., Pérez, J. A. F. & Gómez-Gómez, L. Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta 219, 955–966. https://doi.org/10.1007/s00425-004-1299-1 (2004).Article 
CAS 
PubMed 

Google Scholar 
Zheng, X., Yang, Y. & Al-Babili, S. Exploring the diversity and regulation of apocarotenoid metabolic pathways in plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2021.787049 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Ahrazem, O. et al. The specialized roles in carotenogenesis and apocarotenogenesis of the phytoene synthase gene family in saffron. Front. Plant Sci. 10, 249 (2019).PubMed 
PubMed Central 

Google Scholar 
Beltran, J. C. M. & Stange, C. Apocarotenoids: a new carotenoid-derived pathway. Carotenoids Nature https://doi.org/10.1007/978-3-319-39126-7_9 (2016).Article 

Google Scholar 
Koulakiotis, N. S., Gikas, E., Iatrou, G., Lamari, F. N. & Tsarbopoulos, A. Quantitation of crocins and picrocrocin in saffron by hplc: Application to quality control and phytochemical differentiation from other crocus taxa. Planta medica 81, 606–612. https://doi.org/10.1055/s-0035-1545873 (2015).Article 
CAS 
PubMed 

Google Scholar 
Salehi, M., Karimzadeh, G., Naghavi, M. R., Badi, H. N. & Monfared, S. R. Expression of artemisinin biosynthesis and trichome formation genes in five Artemisia species. Ind. Crops Prod. 112, 130–140. https://doi.org/10.1016/j.indcrop.2017.11.002 (2018).Article 
CAS 

Google Scholar 
Yang, K., Monafared, R. S., Wang, H., Lundgren, A. & Brodelius, P. E. The activity of the artemisinic aldehyde Δ11 (13) reductase promoter is important for artemisinin yield in different chemotypes of Artemisia annua L. Plant Mol. Biol. 88, 325–340. https://doi.org/10.1007/s11103-015-0284-3 (2015).Article 
CAS 
PubMed 

Google Scholar 
Aminkar, S., Shojaeiyan, A., Rashidi Monfared, S. & Ayyari, M. Quantitative assessment of diosgenin from different ecotypes of iranian fenugreek (trigonella foenum-graecum L.) by high-performance liquid chromatography. Int. J. Hortic. Sci. Technol. 5, 103–109 (2018).CAS 

Google Scholar 
Joshi-Saha, A. & Reddy, K. S. Repeat length variation in the 5ʹUTR of myo-inositol monophosphatase gene is related to phytic acid content and contributes to drought tolerance in chickpea (Cicer arietinum L.). J. Exp. Bot. 66, 5683–5690 (2015).CAS 
PubMed 

Google Scholar 
Mounet, F. et al. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149, 1505–1528. https://doi.org/10.1104/pp.108.133967 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Smita, S., Katiyar, A., Chinnusamy, V., Pandey, D. M. & Bansal, K. C. Transcriptional regulatory network analysis of MYB transcription factor family genes in rice. Front. Plant Sci. 6, 1157. https://doi.org/10.3389/fpls.2015.01157 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinf. 9, 559. https://doi.org/10.1186/1471-2105-9-559 (2008).Article 
CAS 

Google Scholar 
Bin, Z. & Steve, H. A general framework for weighted gene co-expression network analysis. Stat. Appl. Gen. Mol. Biol. 4, 1–45. https://doi.org/10.2202/1544-6115.1128 (2005).Article 
MathSciNet 

Google Scholar 
Tai, Y. et al. Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis). BMC Gen. 19, 616. https://doi.org/10.1186/s12864-018-4999-9 (2018).Article 
CAS 

Google Scholar 
Yang, J. et al. Transcriptome-based WGCNA analysis reveals regulated metabolite fluxes between floral color and scent in Narcissus tazetta flower. Int. J. Mol. Sci. 22, 8249. https://doi.org/10.3390/ijms22158249 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lu, C. et al. Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum× morifolium. Plant Physiol. Biochem. 142, 415–428. https://doi.org/10.1016/j.plaphy.2019.07.023 (2019).Article 
CAS 
PubMed 

Google Scholar 
Xu, L. et al. Insights into the plateau adaptation of Salvia castanea by comparative genomic and WGCNA analyses. J. Adv. Res. https://doi.org/10.1016/j.jare.2022.02.004 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhao, X., Ge, W. & Miao, Z. Integrative metabolomic and transcriptomic analyses reveals the accumulation patterns of key metabolites associated with flavonoids and terpenoids of Gynostemma pentaphyllum (Thunb.) Makino. Sci. Rep. 14, 8644 (2024).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moschen, S. et al. Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower. BMC Bioinf. 17, 389–398 (2016).
Google Scholar 
Bhat, A., Mishra, S., Kaul, S. & Dhar, M. K. Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L. PloS one 13, e0195348. https://doi.org/10.1371/journal.pone.0195348 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qian, X. et al. Single-molecule real-time transcript sequencing identified flowering regulatory genes in Crocus sativus. BMC Genom. 20, 857. https://doi.org/10.1186/s12864-019-6200-5 (2019).Article 
CAS 

Google Scholar 
Yue, J. et al. Full-length transcriptome sequencing provides insights into the evolution of apocarotenoid biosynthesis in Crocus sativus. Comput. Struct. Biotechnol. J. 18, 774–783. https://doi.org/10.1016/j.csbj.2020.03.022 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Predieri, S. et al. Chemical composition and sensory evaluation of saffron. Foods 10, 2604 (2021).CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, T. et al. Prospects and progress on crocin biosynthetic pathway and metabolic engineering. Comput. Struct. Biotechnol. J. 18, 3278–3286 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
Baba, S. A. et al. Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genom. 16, 698. https://doi.org/10.1186/s12864-015-1894-5 (2015).Article 
CAS 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
PubMed 
PubMed Central 

Google Scholar 
Wong, D. C. J., Lopez Gutierrez, R., Gambetta, G. A. & Castellarin, S. D. Genome-wide analysis of cis-regulatory element structure and discovery of motif-driven gene co-expression networks in grapevine. DNA Res. 24, 311–326 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
Namayandeh, A., Nemati, Z., Kamelmanesh, M. M., Mokhtari, M. & Mardi, M. Genetic relationships among species of Iranian crocus (Crocus spp.). https://doi.org/10.22092/CBJ.2013.100451 (2013).Yousefi Javan, I. & Gharari, F. Genetic diversity in saffron (Crocus sativus L.) cultivars grown in Iran using SSR and SNP markers. J. Agric. Sci. Technol. 20, 1213–1226 (2018).
Google Scholar 
Mohammadi, M., Mashayekh, T., Rashidi-Monfared, S., Ebrahimi, A. & Abedini, D. New insights into diosgenin biosynthesis pathway and its regulation in Trigonella foenum-graecum L. Phytochem. Anal. 31, 229–241. https://doi.org/10.1002/pca.2887 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zolfaghari, F., Rashidi-Monfared, S., Moieni, A., Abedini, D. & Ebrahimi, A. Improving diosgenin production and its biosynthesis in Trigonella foenum-graecum L. hairy root cultures. Ind. Crops Prod. 145, 112075. https://doi.org/10.1016/j.indcrop.2019.112075 (2020).Article 
CAS 

Google Scholar 
Sayadi, V., Karimzadeh, G., Rashidi Monfared, S. & Naghavi, M. R. Identification and expression analysis of S-alk (en) yl-L-cysteine sulfoxide lyase isoform genes and determination of allicin contents in Allium species. Plos one 15, e0228747. https://doi.org/10.1371/journal.pone.0228747 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nasiri, A., Rashidi-Monfared, S., Ebrahimi, A., Charkhabi, N. F. & Moieni, A. Metabolic engineering of the diosgenin biosynthesis pathway in Trigonella foenum-graceum hairy root cultures. Plant Science 323, 111410. https://doi.org/10.1016/j.plantsci.2022.111410 (2022).Article 
CAS 
PubMed 

Google Scholar 
Poursalavati, A., Rashidi-Monfared, S. & Ebrahimi, A. Toward understanding of the methoxylated flavonoid biosynthesis pathway in Dracocephalum kotschyi Boiss. Sci. Rep. 11, 1–13. https://doi.org/10.1038/s41598-021-99066-6 (2021).Article 
CAS 

Google Scholar 
Gomez-Gomez. Identification of an UDP-glycosyltransferase involved in the biosynthesis of the safranal’s precursor picrocrocin in saffron (Crocus sativus). Ciencia y Tecnologia Agroforestal (2018).Tan, H. et al. Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast. J. Exp. Bot. 70, 4819–4834. https://doi.org/10.1093/jxb/erz211 (2019).Article 
CAS 
PubMed 

Google Scholar 
Jain, M., Srivastava, P. L., Verma, M., Ghangal, R. & Garg, R. D. novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Sci. Rep. 6, 1–13. https://doi.org/10.1038/srep22456 (2016).Article 
CAS 

Google Scholar 
Malik, A. H. & Ashraf, N. Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L. Mol. Gen. Genom. 292, 619–633. https://doi.org/10.1007/s00438-017-1295-3 (2017).Article 
CAS 

Google Scholar 
Lu, S. et al. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiol. 176, 2657–2676. https://doi.org/10.1104/pp.17.01830 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ampomah-Dwamena, C. et al. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytologist 221, 309–325. https://doi.org/10.1111/nph.15362 (2019).Article 
CAS 
PubMed 

Google Scholar 
Dang, Q. et al. An apple (Malus domestica) AP2/ERF transcription factor modulates carotenoid accumulation. Horticulture research https://doi.org/10.1038/s41438-021-00694-w (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Malik, A. H., Khurshaid, N., Shabir, N. & Ashraf, N. Transcriptome wide identification, characterization and expression analysis of PHD gene family in Crocus sativus. Physiol. Mol. Biol. Plants https://doi.org/10.1007/s12298-024-01410-3 (2024).Article 
PubMed 

Google Scholar 
Bhat, Z. Y., Mohiuddin, T., Kumar, A., López-Jiménez, A. J. & Ashraf, N. Crocus transcription factors CstMYB1 and CstMYB1R2 modulate apocarotenoid metabolism by regulating carotenogenic genes. Plant Mol. Biol. 107, 49–62 (2021).CAS 
PubMed 

Google Scholar 
Yang, Z.-T. et al. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Gen. 10, e1004243 (2014).
Google Scholar 
Liu, L., Xu, W., Hu, X., Liu, H. & Lin, Y. W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci. Rep. 6, 20881 (2016).ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kakeshpour, T., Nayebi, S., Monfared, S. R., Moieni, A. & Karimzadeh, G. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L. Physiol. Mol. Biol. Plants 21, 465–478 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. et al. Genome-wide identification and expression analysis of the MADS-box gene family during female and male flower development in Juglans mandshurica. Front. Plant Sci. 13, 1020706 (2022).PubMed 
PubMed Central 

Google Scholar 
Valliyodan, B. & Nguyen, H. T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 9, 189–195 (2006).CAS 
PubMed 

Google Scholar 
Fujita, M. et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9, 436–442 (2006).PubMed 

Google Scholar 
Taherkhani, T., Asghari, Z. R., Omidi, M. & Zare, N. Effect of abscisic acid (ABA) on crocin and safranal contents and expression of controlling genes in saffron (Crocus sativus L.). Natural Prod. Res. 33(4), 486–493 (2018).
Google Scholar 
Demurtas, O. C. et al. ABCC transporters mediate the vacuolar accumulation of crocins in saffron stigmas. Plant Cell 31, 2789–2804. https://doi.org/10.1105/tpc.19.00193 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Demurtas, O. C. et al. Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments. Plant Physiol. 177, 990–1006. https://doi.org/10.1104/pp.17.01815 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
López-Jimenez, A. J. et al. A new glycosyltransferase enzyme from Family 91, UGT91P3, is responsible for the final glucosylation step of crocins in saffron (Crocus sativus L.). Int. J. Mol. Sci. 22, 8815. https://doi.org/10.3390/ijms22168815 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ahrazem, O. et al. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. Plant Sci. 234, 60–73. https://doi.org/10.1016/j.plantsci.2015.02.004 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ahrazem, O., Rubio-Moraga, A., Nebauer, S. G., Molina, R. V. & Gomez-Gomez, L. Saffron: Its phytochemistry, developmental processes, and biotechnological prospects. J. Agric. Food Chem. 63, 8751–8764. https://doi.org/10.1021/acs.jafc.5b03194 (2015).Article 
CAS 
PubMed 

Google Scholar 
Bouvier, F., Suire, C., Mutterer, J. & Camara, B. Oxidative remodeling of chromoplast carotenoids: Identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. The Plant Cell 15, 47–62. https://doi.org/10.1105/tpc.006536 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Andrews, S. (2010)Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890. https://doi.org/10.1093/bioinformatics/bty560 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grabherr, M. G. et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnol. 29, 644. https://doi.org/10.1038/nbt.1883 (2011).Article 
CAS 

Google Scholar 
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).Article 
CAS 
PubMed 

Google Scholar 
Jin, J. et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw982 (2016).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Ahrazem, O. et al. Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus. BMC Genom. 20, 320 (2019).
Google Scholar 
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods 14, 417. https://doi.org/10.1038/nmeth.4197 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y., Jenkins, D. F., Manimaran, S. & Johnson, W. E. Alternative empirical Bayes models for adjusting for batch effects in genomic studies. BMC Bioinform. 19, 1–15. https://doi.org/10.1186/s12859-018-2263-6 (2018).Article 
CAS 

Google Scholar 
Chin, C.-H. et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8, 1–7 (2014).
Google Scholar 
Szklarczyk, D. et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646 (2023).CAS 
PubMed 

Google Scholar 
Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic acids Res. 43, W39–W49 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
Higo, K., Ugawa, Y., Iwamoto, M. & Korenaga, T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297–300 (1999).CAS 
PubMed 
PubMed Central 

Google Scholar 
Lescot, M. et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325–327 (2002).CAS 
PubMed 
PubMed Central 

Google Scholar 
Kabiri, M., Rezadoost, H. & Ghassempour, A. A comparative quality study of saffron constituents through HPLC and HPTLC methods followed by isolation of crocins and picrocrocin. LWT 84, 1–9 (2017).CAS 

Google Scholar 
Marshall, O. J. PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20, 2471–2472. https://doi.org/10.1093/bioinformatics/bth254 (2004).Article 
CAS 
PubMed 

Google Scholar 
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔCT method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles