De-novo transcriptome of anterior epimorphic regeneration in Perionyx excavatus

Álvarez-Campos, P. et al. Annelid adult cell type diversity and their pluripotent cellular origins. bioRxiv, 2023.2004. 2025.537979 (2023).Elchaninov, A., Sukhikh, G. & Fatkhudinov, T. Evolution of regeneration in animals: A tangled story. Frontiers in Ecology and Evolution 9, 621686 (2021). J. F. i. E. & Evolution.Article 

Google Scholar 
Boyd, A. & Seaver, E. in Integrative and Comparative Biology. S36-S37 (Oxford Univ Press Inc Journals Dept, 2001 Evans Rd, Cary, NC 27513 USA).Seaver, E. C. & de Jong, D. M. J. G. Regeneration in the segmented annelid Capitella teleta. Genes 12, 1769 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martinez-Acosta, V. G. & Zoran, M. J. J. e. Evolutionary aspects of annelid regeneration. eLS, 1-7 (2015).Bideau, L. et al. Antero-posterior gradients of cell plasticity and proliferation modulate posterior regeneration in the annelid Platynereis. bioRxiv, 2023.2006. 2012.544593 (2023).Paré, L. et al. Transcriptomic landscape of posterior regeneration in the annelid Platynereis dumerilii. bioRxiv, 2023.2005. 2026.542455 (2023).Fujita, T., Aoki, N., Mori, C., Homma, K. & Yamaguchi, S. Accumulation of soxC-expressing cells facilitated by MMPreg is essential for blastema formation in annelids (2022).Bideau, L. et al. Animal regeneration in the era of transcriptomics. Cellular and Molecular Life Sciences 78, 3941–3956 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gazave, E., Lemaître, Q. I. & Balavoine, G. J. Ob The Notch pathway in the annelid Platynereis: insights into chaetogenesis and neurogenesis processes. Open biology 7, 160242 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Subramanian, E. R. et al. Function of translationally controlled tumor protein (TCTP) in Eudrilus eugeniae regeneration. PloS one 12, e0175319 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Yu, Y.-S. et al. Differential expression of primary pair-rule genes during bidirectional regeneration in Perionyx excavatus. Genes & genomics 40, 747–753 (2018).Article 
CAS 

Google Scholar 
Shao, Y. et al. Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. Nature communications 11, 1–15 (2020).Article 
ADS 

Google Scholar 
Bae, Y. S. et al. Characterization of perionyx excavatus development and its head regeneration. Biology 9, 273 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Özpolat, B. D. & Bely, A. E. Developmental and molecular biology of annelid regeneration: a comparative review of recent studies. Current opinion in genetics & development 40, 144–153 (2016).Article 

Google Scholar 
Bely, A. E. J. A. Z. Early events in annelid regeneration: a cellular perspective. American Zoologist 54, 688–699 (2014).
Google Scholar 
Ganesan, M. et al. Isolation and Molecular Characterization of a Fluorescence-Emitting Bacterium from the Gut of Earthworm, Perionyx excavatus (Perrier, 1872), and Its Symbiotic Association in Earthworm Regeneration. Journal of Skin and Stem Cell 8 (2021).Cho, S.-J. et al. Gene expression profile in the anterior regeneration of the earthworm using expressed sequence tags. Bioscience, biotechnology, and biochemistry 73, 29–34 (2009).Article 
CAS 
PubMed 

Google Scholar 
Shalaeva, A. Y. & Kozin, V. V. J. C. Cell Proliferation Indices in Regenerating Alitta virens (Annelida, Errantia). Cells 12, 1354 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ponesakki, V. et al. Annotation of nerve cord transcriptome in earthworm Eisenia fetida. Genomics data 14, 91–105 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Kostyuchenko, R. P. & Kozin, V. V. J. G. Comparative aspects of annelid regeneration: Towards understanding the mechanisms of regeneration. Genes 12, 1148 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rossan Mathews, M. G. et al. Biochemical and functional characterization of heat-inactivated coelomic fluid from earthworms as a potential alternative for fetal bovine serum in animal cell culture. Scientific Reports 14 (2024).Simon, A. FastQC: a quality control tool for high throughput sequence data. (2010).Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 8 (2019).Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).Article 
CAS 
PubMed 

Google Scholar 
Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).Article 
CAS 
PubMed 

Google Scholar 
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP483521 (2024).Grace, M. & Samuel, J. R. De-novo transcriptome annotation of anterior epimorphic regeneration in Perionyx excavatus. figshare https://doi.org/10.6084/m9.figshare.25264846 (2024).Paul, S. et al. The transcriptome of anterior regeneration in earthworm Eudrilus eugeniae. Molecular Biology Reports 48, 259–283 (2021).Article 
CAS 
PubMed 

Google Scholar 
Sahu, R., Sahu, S. K., Nishank, S. S. J. B. & Reports, B. de novo transcriptome profile of two earthworms Lampito mauritii and Drawida calebi during regeneration. Biochemistry and Biophysics Reports 27, 101092 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles