A web portal for exploring kinase-substrate interactions

Fischer, E. H. Cellular regulation by protein phosphorylation: a historical overview. BioFactors 6, 367–374 (1997).Article 
CAS 
PubMed 

Google Scholar 
Pawson, T. & Scott, J. D. Protein phosphorylation in signaling—50 years and counting. Trends Biochem. Sci. 30, 286–290 (2005).Article 
CAS 
PubMed 

Google Scholar 
Fleuren, E. D. G., Zhang, L., Wu, J. & Daly, R. J. The kinome ‘at large’ in cancer. Nat. Rev. Cancer 16, 83–98 (2016).Article 
CAS 
PubMed 

Google Scholar 
Alganem, K. et al. The active kinome: the modern view of how active protein kinase networks fit in biological research. Curr. Opin. Pharmacol. 62, 117–129 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wu, P., Nielsen, T. E. & Clausen, M. H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 36, 422–439 (2015).Article 
CAS 
PubMed 

Google Scholar 
Berndt, N., Karim, R. M. & Schönbrunn, E. Advances of small molecule targeting of kinases. Curr. Opin. Chem. Biol. 39, 126–132 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Munoz, L. Non-kinase targets of protein kinase inhibitors. Nat. Rev. Drug Discov. 16, 424–440 (2017).Article 
CAS 
PubMed 

Google Scholar 
Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505–509 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Buljan, M. et al. Kinase interaction network expands functional and disease roles of human kinases. Mol. Cell 79, 504–520.e9 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rahman, R., Ung, P. M.-U. & Schlessinger, A. KinaMetrix: a web resource to investigate kinase conformations and inhibitor space. Nucleic Acids Res. 47, D361–D366 (2019).Article 
CAS 
PubMed 

Google Scholar 
Modi, V. & Dunbrack, R. L. Jr. Kincore: a web resource for structural classification of protein kinases and their inhibitors. Nucleic Acids Res. 50, D654–D664 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kooistra, A. J. et al. KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Res. 44, D365–D371 (2016).Article 
CAS 
PubMed 

Google Scholar 
Johnson, J. L. et al. An atlas of substrate specificities for the human serine/threonine kinome. Nature 613, 759–766 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sanchez-Vega, F. et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell 173, 321–337.e10 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor-tyrosine kinases. Cell 141, 1117–1134 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pearce, L. R., Komander, D. & Alessi, D. R. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 11, 9–22 (2010).Article 
CAS 
PubMed 

Google Scholar 
Varjosalo, M. et al. The protein interaction landscape of the human CMGC kinase group. Cell Rep. 3, 1306–1320 (2013).Article 
CAS 
PubMed 

Google Scholar 
Ullah, R., Yin, Q., Snell, A. H. & Wan, L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin. Cancer Biol. 85, 123–154 (2022).Article 
CAS 
PubMed 

Google Scholar 
Vasta, J. D. et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem. Biol. 25, 206–214.e11 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hornbeck, P. V. et al. 15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res. 47, D433–D441 (2019).Article 
CAS 
PubMed 

Google Scholar 
Huang, H. et al. iPTMnet: an integrated resource for protein post-translational modification network discovery. Nucleic Acids Res. 46, D542–D550 (2018).Article 
CAS 
PubMed 

Google Scholar 
Lin, S. et al. EPSD: a well-annotated data resource of protein phosphorylation sites in eukaryotes. Brief. Bioinform. 22, 298–307 (2021).Article 
CAS 
PubMed 

Google Scholar 
Eid, S., Turk, S., Volkamer, A., Rippmann, F. & Fulle, S. KinMap: a web-based tool for interactive navigation through human kinome data. BMC Bioinforma. 18, 1–6 (2017).Article 

Google Scholar 
Metz, K. S. et al. Coral: clear and customizable visualization of human kinome data. Cell Syst. 7, 347–350.e1 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berginski, M. E. et al. The Dark Kinase Knowledgebase: an online compendium of knowledge and experimental results of understudied kinases. Nucleic Acids Res. 49, D529–D535 (2021).Article 
CAS 
PubMed 

Google Scholar 
Breuza, L. et al. The UniProtKB guide to the human proteome. Database 2016, bav120 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Oughtred, R. et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).Article 
CAS 
PubMed 

Google Scholar 
Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020).CAS 
PubMed 

Google Scholar 
Rodchenkov, I. et al. Pathway Commons 2019 update: integration, analysis and exploration of pathway data. Nucleic Acids Res. 48, D489–D497 (2020).CAS 
PubMed 

Google Scholar 
Morrison, D. K. MAP Kinase Pathways. Cold Spring Harb. Perspect. Biol. 4, a011254 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Polzien, L. et al. Identification of novel in vivo phosphorylation sites of the human proapoptotic protein BAD: pore-forming activity of bad is regulated by phosphorylation. J. Biol. Chem. 284, 28004–28020 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sanges, C. et al. Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells. Cell Death Dis. 3, e276–e276 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, X., Augustine, A., Sun, D., Li, L. & Fliegel, L. Activation of the Na+/H+ exchanger in isolated cardiomyocytes through β-Raf dependent pathways. Role of Thr653 of the cytosolic tail. J. Mol. Cell. Cardiol. 99, 65–75 (2016).Article 
CAS 
PubMed 

Google Scholar 
Guan, K.-L. et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J. Biol. Chem. 275, 27354–27359 (2000).Article 
CAS 
PubMed 

Google Scholar 
Cheung, M., Sharma, A., Madhunapantula, S. V. & Robertson, G. P. Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. Cancer Res. 68, 3429–3439 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Duan, L. & Cobb, M. H. Calcineurin increases glucose activation of ERK1/2 by reversing negative feedback. Proc. Natl Acad. Sci. USA 107, 22314–22319 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wallert, M. A. et al. RhoA kinase (Rock) and p90 ribosomal S6 kinase (p90Rsk) phosphorylation of the sodium hydrogen exchanger (NHE1) is required for lysophosphatidic acid-induced transport, cytoskeletal organization and migration. Cell. Signal. 27, 498–509 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Snabaitis, A. K., Cuello, F. & Avkiran, M. Protein kinase B/Akt phosphorylates and inhibits the cardiac Na+/H+ exchanger NHE1. Circ. Res. 103, 881–890 (2008).Article 
CAS 
PubMed 

Google Scholar 
Hendus-Altenburger, R. et al. A phosphorylation-motif for tuneable helix stabilisation in intrinsically disordered proteins—lessons from the sodium proton exchanger 1 (NHE1). Cell. Signal. 37, 40–51 (2017).Article 
CAS 
PubMed 

Google Scholar 
Borisov, N. et al. Systems-level interactions between insulin–EGF networks amplify mitogenic signaling. Mol. Syst. Biol. 5, 256 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Barnum, K. J. & O’Connell, M. J. Cell cycle regulation by checkpoints. In Cell Cycle Control: Mechanisms and Protocols (eds Noguchi, E. & Gadaleta, M. C.) 29–40 (Springer, 2014).Fujimoto, K., Takahashi, S. Y. & Katoh, S. Mutational analysis of sites in sepiapterin reductase phosphorylated by Ca2+/calmodulin-dependent protein kinase II. Biochim. Biophys. Acta BBA Protein Struct. Mol. Enzymol. 1594, 191–198 (2002).CAS 

Google Scholar 
Wu, Y. et al. Sepiapterin reductase: characteristics and role in diseases. J. Cell. Mol. Med. 24, 9495–9506 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).Article 
CAS 
PubMed 

Google Scholar 
Kurochkina, N. & Guha, U. SH3 domains: modules of protein–protein interactions. Biophys. Rev. 5, 29–39 (2013).Article 
CAS 
PubMed 

Google Scholar 
Bahl, S. & Seto, E. Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell. Mol. Life Sci. 78, 427–445 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kee, J. et al. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 610, 381–388 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Savage, S. R. & Zhang, B. Using phosphoproteomics data to understand cellular signaling: a comprehensive guide to bioinformatics resources. Clin. Proteom. 17, 27 (2020).Article 

Google Scholar 
Dinkel, H. et al. Phospho.ELM: a database of phosphorylation sites—update 2011. Nucleic Acids Res. 39, D261–D267 (2011).Article 
CAS 
PubMed 

Google Scholar 
Suo, S.-B., Qiu, J.-D., Shi, S.-P., Chen, X. & Liang, R.-P. PSEA: kinase-specific prediction and analysis of human phosphorylation substrates. Sci. Rep. 4, 4524 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Jung, I., Matsuyama, A., Yoshida, M. & Kim, D. PostMod: sequence based prediction of kinase-specific phosphorylation sites with indirect relationship. BMC Bioinforma. 11, 1–10 (2010).Article 

Google Scholar 
Lee, T.-Y., Bo-Kai Hsu, J., Chang, W.-C. & Huang, H.-D. RegPhos: a system to explore the protein kinase–substrate phosphorylation network in humans. Nucleic Acids Res. 39, D777–D787 (2011).Article 
CAS 
PubMed 

Google Scholar 
Seal, R. L. et al. Genenames.org: the HGNC resources in 2023. Nucleic Acids Res. 51, D1003–D1009 (2023).Article 
CAS 
PubMed 

Google Scholar 
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).Article 
CAS 
PubMed 

Google Scholar 
Chang, W. et al. Shiny: Web Application Framework for R. https://cran.r-project.org/web/packages/shiny/index.html (2023).Aden-Buie, G., Sievert, C., Iannone, R., Allaire, J. & Borges, B. Flexdashboard: R Markdown Format for Flexible Dashboards. https://cran.r-project.org/web/packages/flexdashboard/index.html (2023).Almende, B. V. & Benoit, T. visNetwork: Network Visualization using ‘vis.js’ Library. https://datastorm-open.r-universe.dev/visNetwork (2022).Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Systems 1695, 1–9 (2006).Himsolt, M. GML: Graph Modelling Language (University of Passau, 1997).Brandes, U., Eiglsperger, M., Lerner, J. & Pich, C. Graph Markup Language (GraphML) (University of Konstanz, 2010).Gansner, E., Koutsofios, E. & North, S. Drawing Graphs with Dot. http://web.mit.edu/outland/share/graphviz/doc/pdf/dotguide.pdf (2006).Fang, Z., Liu, X. & Peltz, G. GSEApy: a comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics 39, btac757 (2023).Article 
CAS 
PubMed 

Google Scholar 
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).Article 

Google Scholar 

Hot Topics

Related Articles