A phenocopy signature of TP53 loss predicts response to chemotherapy

Levine, A. J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471–480 (2020).Article 
CAS 
PubMed 

Google Scholar 
Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Leroy, B., Anderson, M. & Soussi, T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum. Mutat. 35, 672–688 (2014).Article 
CAS 
PubMed 

Google Scholar 
Soussi, T. & Wiman, K. G. TP53: an oncogene in disguise. Cell Death Differ. 22, 1239–1249 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Donehower, L. A. et al. Integrated analysis of TP53 gene and pathway alterations in the Cancer Genome Atlas. Cell Rep. 28, 1370–1384.e1375 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
de Andrade, K. C. et al. The TP53 Database: transition from the International Agency for Research on Cancer to the US National Cancer Institute. Cell Death Differ. 29, 1071–1073 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Kennedy, M. C. & Lowe, S. W. Mutant p53: it’s not all one and the same. Cell Death Differ. 29, 983–987 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kato, S. et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl Acad. Sci. USA 100, 8424–8429 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).Article 
CAS 
PubMed 

Google Scholar 
Lowe, S. W. et al. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810 (1994).Article 
CAS 
PubMed 

Google Scholar 
Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263–269 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Network, C. G. A., Getz, G., Chin, L., Mills, G. B. & Ingle, J. N. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).Article 

Google Scholar 
Pharoah, P. D., Day, N. E. & Caldas, C. Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br. J. Cancer 80, 1968–1973 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meric-Bernstam, F. et al. Survival Outcomes by TP53 Mutation Status in Metastatic Breast Cancer. JCO Precis Oncol 2018, PO.17.00245 (2018).Blaszyk, H. et al. A prospective trial of midwest breast cancer patients: a p53 gene mutation is the most important predictor of adverse outcome. Int. J. Cancer 89, 32–38 (2000).Article 
CAS 
PubMed 

Google Scholar 
Dobes, P. et al. Influence of mutation type on prognostic and predictive values of TP53 status in primary breast cancer patients. Oncol. Rep. 32, 1695–1702 (2014).Article 
CAS 
PubMed 

Google Scholar 
Powell, B., Soong, R., Iacopetta, B., Seshadri, R. & Smith, D. R. Prognostic significance of mutations to different structural and functional regions of the p53 gene in breast cancer. Clin. Cancer Res. 6, 443–451 (2000).CAS 
PubMed 

Google Scholar 
Silwal-Pandit, L. et al. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin. Cancer Res. 20, 3569–3580 (2014).Article 
CAS 
PubMed 

Google Scholar 
Coates, A. S. et al. Prognostic interaction between expression of p53 and estrogen receptor in patients with node-negative breast cancer: results from IBCSG Trials VIII and IX. Breast Cancer Res. 14, R143 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Coutant, C. et al. Distinct p53 gene signatures are needed to predict prognosis and response to chemotherapy in ER-positive and ER-negative breast cancers. Clin. Cancer Res. 17, 2591–2601 (2011).Article 
CAS 
PubMed 

Google Scholar 
Kandioler-Eckersberger, D. et al. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin. Cancer Res. 6, 50–56 (2000).CAS 
PubMed 

Google Scholar 
Gluck, S. et al. TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine +/- trastuzumab. Breast Cancer Res. Treat. 132, 781–791 (2012).Article 
PubMed 

Google Scholar 
Bertheau, P. et al. Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. PLoS Med. 4, e90 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Aas, T. et al. Predictive value of tumour cell proliferation in locally advanced breast cancer treated with neoadjuvant chemotherapy. Eur. J. Cancer 39, 438–446 (2003).Article 
CAS 
PubMed 

Google Scholar 
Geisler, S. et al. TP53 gene mutations predict the response to neoadjuvant treatment with 5-fluorouracil and mitomycin in locally advanced breast cancer. Clin. Cancer Res. 9, 5582–5588 (2003).CAS 
PubMed 

Google Scholar 
Anelli, A., Brentani, R. R., Gadelha, A. P., Amorim De Albuquerque, A. & Soares, F. Correlation of p53 status with outcome of neoadjuvant chemotherapy using paclitaxel and doxorubicin in stage IIIB breast cancer. Ann. Oncol. 14, 428–432 (2003).Article 
CAS 
PubMed 

Google Scholar 
Guarneri, V. et al. Predictive and prognostic role of p53 according to tumor phenotype in breast cancer patients treated with preoperative chemotherapy: a single-institution analysis. Int. J. Biol. Markers 25, 104–111 (2010).Article 
PubMed 

Google Scholar 
Tiezzi, D. G. et al. HER-2, p53, p21 and hormonal receptors proteins expression as predictive factors of response and prognosis in locally advanced breast cancer treated with neoadjuvant docetaxel plus epirubicin combination. BMC Cancer 7, 36 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Bonnefoi, H. et al. TP53 status for prediction of sensitivity to taxane versus non-taxane neoadjuvant chemotherapy in breast cancer (EORTC 10994/BIG 1-00): a randomised phase 3 trial. Lancet Oncol. 12, 527–539 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Darb-Esfahani, S. et al. Role of TP53 mutations in triple negative and HER2-positive breast cancer treated with neoadjuvant anthracycline/taxane-based chemotherapy. Oncotarget 7, 67686–67698 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Hurson, A. N. et al. Prognostic significance of RNA-based TP53 pathway function among estrogen receptor positive and negative breast cancer cases. NPJ Breast Cancer 8, 74 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bakhtiar, H. et al. Identification of phenocopies improves prediction of targeted therapy response over DNA mutations alone. NPJ Genom. Med. 7, 58 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013).Article 

Google Scholar 
Korde, L. A. et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J. Clin. Oncol. 39, 1485–1505 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cortazar, P. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).Article 
PubMed 

Google Scholar 
Wolf, D. M. et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies. Cancer Cell 40, 609–623.e606 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Symmans, W. F. et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype. J. Clin. Oncol. 35, 1049–1060 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Filho, O. M. et al. Association of immunophenotype with pathologic complete response to neoadjuvant chemotherapy for triple-negative breast cancer: a secondary analysis of the BrighTNess Phase 3 randomized clinical trial. JAMA Oncol. 7, 603–608 (2021).Article 
PubMed 

Google Scholar 
Loibl, S. et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol. 19, 497–509 (2018).Article 
CAS 
PubMed 

Google Scholar 
Magbanua, M. J. et al. Serial expression analysis of breast tumors during neoadjuvant chemotherapy reveals changes in cell cycle and immune pathways associated with recurrence and response. Breast Cancer Res. 17, 73 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Schmid, P. et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N. Engl. J. Med. 386, 556–567 (2022).Article 
CAS 
PubMed 

Google Scholar 
Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821 (2020).Article 
CAS 
PubMed 

Google Scholar 
Esserman, L. J. et al. Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res. Treat. 132, 1049–1062 (2012).Article 
CAS 
PubMed 

Google Scholar 
Carlsen, L. et al. The role of p53 in anti-tumor immunity and response to immunotherapy. Front. Mol. Biosci. 10, 1148389 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dong, Z. Y. et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 23, 3012–3024 (2017).Article 
CAS 
PubMed 

Google Scholar 
Malekzadeh, P. et al. Antigen experienced T cells from peripheral blood recognize p53 neoantigens. Clin. Cancer Res. 26, 1267–1276 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deniger, D. C. et al. T-cell responses to TP53 “hotspot” mutations and unique neoantigens expressed by human ovarian cancers. Clin. Cancer Res. 24, 5562–5573 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cree, I. A. & Charlton, P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 17, 10 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Tredan, O., Galmarini, C. M., Patel, K. & Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst. 99, 1441–1454 (2007).Article 
CAS 
PubMed 

Google Scholar 
Wade, M., Li, Y. C. & Wahl, G. M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13, 83–96 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Aggarwal, R. et al. Prognosis associated with luminal and basal subtypes of metastatic prostate cancer. JAMA Oncol. 7, 1644–1652 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, W., Li, E., Wang, L., Lehmann, B. D. & Chen, X. S. Transcriptome meta-analysis of triple-negative breast cancer response to neoadjuvant chemotherapy. Cancers (Basel) 15, 2194 (2023).

Hot Topics

Related Articles