The phyllosphere of Nigerian medicinal plants, Euphorbia lateriflora and Ficus thonningii is inhabited by a specific microbiota

Lindow, S. E. & Brandl, M. T. Microbiology of the Phyllosphere. Appl. Environ. Microbiol. 69, 1875–1883 (2003).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vorholt, J. A. Microbial life in the phyllosphere. Nat. Publ. Gr. 10, 828–840 (2012).CAS 

Google Scholar 
Yang, C., Crowley, D. E., Borneman, J. & Keen, N. T. Microbial phyllosphere populations are more complex than previously realized. PNAS 98, 3889–3894 (2001).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Knief, C., Ramette, A., Frances, L., Alonso-blanco, C. & Vorholt, J. A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 4, 719–728 (2010).Article 
CAS 
PubMed 

Google Scholar 
Köberl, M., Schmidt, R., Ramadan, E. M., Bauer, R. & Berg, G. The microbiome of medicinal plants : Diversity and importance for plant growth, quality, and health. Front. Microbiol. 4, 1–9 (2013).Article 

Google Scholar 
Schmidt, R. et al. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front. Microbiol. 5, 1–11 (2014).Article 
CAS 

Google Scholar 
Brown, P. N. & Roman, M. C. Determination of hydrastine and berberine in goldenseal raw materials, extracts, and dietary supplements by high-performance liquid chromatography with UV: Collaborative study. J. AOAC Int. 91, 694–701 (2008).Article 
CAS 
PubMed 

Google Scholar 
Gachelin, G., Garner, P., Ferroni, E., Tröhler, U. & Chalmers, I. Evaluating Cinchona bark and quinine for treating and preventing malaria. J. R. Soc. Med. 110, 31–40 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Peng, X. et al. Emetine, a small molecule natural product, displays potent anti-gastric cancer activity via regulation of multiple signaling pathways. Cancer Chemother. Pharmacol. 91, 303–315 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wani, M. C., Taylor, H. C., Wall, M. E., Coggan, P. & McPhail, A. T. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327 (1971).Article 
CAS 
PubMed 

Google Scholar 
Perreault, R. & Laforest-Lapointe, I. Plant-microbe interactions in the phyllosphere : Facing challenges of the anthropocene. ISME J. 16, 339–345 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Sauer, S., Dlugosch, L., Kammerer, D. R., Stintzing, F. C. & Simon, M. The microbiome of the medicinal plants Achillea millefolium L. and Hamamelis virginiana L.. Front. Microbiol. 12, 1–19 (2021).Article 

Google Scholar 
Strobel, G. & Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 67, 491–502 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Strobel, G., Daisy, B., Castillo, U. & Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod. 67, 257–268 (2004).Article 
CAS 
PubMed 

Google Scholar 
Gunatilaka, L. Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. J. Nat. Prod. 69, 509–526 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chandra, S. Endophytic fungi : Novel sources of anticancer lead molecules. Appl. Microbiol. Biotechnol. 95, 47–59 (2012).Article 
CAS 
PubMed 

Google Scholar 
Egamberdieva, D., Wirth, S., Behrendt, U. & Ahmad, P. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front. Microbiol. 8, 1–11 (2017).Article 

Google Scholar 
Miller, K. I., Qing, C., Sze, D. M. Y., Roufogalis, B. D. & Neilan, B. A. Culturable endophytes of medicinal plants and the genetic basis for their bioactivity. Microb. Ecol. 64, 431–449 (2012).Article 
ADS 
PubMed 

Google Scholar 
Burkill, H. M. The Useful Plants of West Tropical Africa 6th edn. (Royal Botanic Gardens, 1994).
Google Scholar 
Chikere, C. B. & Azubuike, C. C. Microbial composition of guava (Psidium guajava), hibiscus (Hibiscus-rosa sinensis), mango (Mangifera indica) and pumpkin (Telfairia occidentalis Hook) phyllosphere. Afr. J. Biotechnol. 13, 1859–1866 (2014).Article 

Google Scholar 
Oluyemi, B. M. Multidrug resistant Staphylococcus isoltes from the phyllosphere and rhizosphere of Ficus sycomorus Linn. World Rural Obs. 5, 6–10 (2013).
Google Scholar 
Usman, M. M., Sule, M. S. & Gwarzo, M. Y. Toxicological studies of aqueous root extract of Euphorbia lateriflora (Schum and Thonn) in rats. J. Med. Plants Stud. 2, 58–62 (2014).
Google Scholar 
Kheyrodin, H. & Ghazvinian, K. H. The toxicity material extraction from Euphorbia species. Iran Agric. Res. 31, 66–73 (2013).
Google Scholar 
Noumi, E. Ethno medicines used for treatment of prostatic disease in Foumban, Cameroon. Afr. J. Pharm. Pharmacol. 4, 793–805 (2010).
Google Scholar 
Egharevba, H. O., Carew, O. & Kunle, O. F. Phytochemical and pharmacognostic analysis of Ficus thonningii blume leaves for monograph development. Int. J. Basic Appl. Sci. 4, 94–100 (2015).
Google Scholar 
Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Anthony, S. Ficus thonningii Blume. Agroforestree Database: a tree reference and selection guide version 4. 1–5. (2009). https://worldagroforestry.org/output/agroforestree-database.Aniagu, S. O. et al. Short-term toxicity studies of Ficus thonningii blume (Moraceae) leaf extract in rats. Int. J. Food Sci. Technol. 43, 456–463 (2008).Article 
CAS 

Google Scholar 
Coker, M. E., Emikpe, B. O., Adeniyi, B. A. & Budale, B. A. The anti-inflammatory potential, heamatological and histological changes induced in rats due to the administration of methanolic extracts of Ficus thonningii leaves. Afr. J. Pharm. Pharmacol. 3, 273–276 (2009).
Google Scholar 
Musabayane, C. T., Gondwe, M., Kamadyaapa, D. R., Chuturgoon, A. A. & Ojewole, J. A. O. Effects of Ficus thonningii (blume) [Morarceae] stem-bark ethanolic extract on blood glucose, cardiovascular and kidney functions of rats, and on kidney cell lines of the proximal (LLC-PK1) and distal tubules (MDBK). Renal Fail. 29, 389–397 (2007).Article 
CAS 

Google Scholar 
Njoroge, G. N. & Kibunga, J. W. Herbal medicine acceptance, sources and utilization for diarrhoea management in a cosmopolitan urban area (Thika, Kenya). Afr. J. Ecol. 45, 65–70 (2007).Article 

Google Scholar 
Bah, S., Diallo, D., Dembélé, S. & Paulsen, B. S. Ethnopharmacological survey of plants used for the treatment of schistosomiasis in Niono District, Mali. J. Ethnopharmacol. 105, 387–399 (2006).Article 
PubMed 

Google Scholar 
Moshi, M. J., Otieno, D. F., Mbabazi, P. K. & Weisheit, A. The ethnomedicine of the haya people of bugabo ward, Kagera region, north western Tanzania. J. Ethnobiol. Ethnomed. 5, 24 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Cousins, D. & Huffman, M. Medicinal properties in the diet of gorillas: An ethno-pharmacological evaluation. Afr. Stud. Monogr. 23, 65–89 (2002).
Google Scholar 
Alawa, J. P., Jokthan, G. E. & Akut, K. Ethnoveterinary medical practice for ruminants in the subhumid zone of northern Nigeria. Prev. Vet Med. 54, 79–90 (2002).Article 
CAS 
PubMed 

Google Scholar 
Koné, W. M. et al. Traditional medicine in North Côte-d ’ Ivoire : Screening of 50 medicinal plants for antibacterial activity. J. Ethnopharmacol. 93, 43–49 (2004).Article 
PubMed 

Google Scholar 
Usman, A., Abdulrahman, F. I. & Usman, A. Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). Afr. J. Tradit. Complement. Altern. Med. 6, 289–295 (2009).CAS 
PubMed 
PubMed Central 

Google Scholar 
Ndukwe, I. G., Bello, A. I., Habila, J. D. & John, C. Phytochemical and antimicrobial screening of the crude petroleum spirit and methanol extracts of the stem bark, leaves and roots of Ficus thoningii (blume). Afr. J. Biotechnol. 6, 2645–2649 (2007).Article 

Google Scholar 
Coker, M. E. & Oaikhena, A. O. Antimicrobial Activity of the crude extracts and fractions of Ficus thonningii (blume) on isolates from urinary tract infections. J. Med. Act. Plants 9, 310 (2020).
Google Scholar 
Adesida, S. A. et al. Staphylococcal bacteraemia among human immunodeficiency virus positive patients at a screening center in Lagos, Nigeria. Beni-Suef Univ J. Basic Appl. Sci. 6, 112–117 (2017).
Google Scholar 
Oyelana, O. A. et al. Antimmicrobial activity of ficus leaf extracts on some fungal and bacterial pathogens of Dioscorea rotundata from Southwest Nigeria. J. Biol. Sci. 11, 359–366 (2011).Article 

Google Scholar 
Dangarembizi, R., Erlwanger Kennedy, H., Moyo, D. & Chivandi, E. Phytochemistry, pharmacology and ethnomedicinal uses of Ficus thonningii (blume Moraceae): A review. Afr. J. Tradit. Complement. Altern. Med. 10, 203–212 (2013).CAS 
PubMed 

Google Scholar 
Falade, M. O. et al. In vitro and in vivo antimalarial activity of Ficus thonningii blume (Moraceae) and Lophira alata Banks (Ochnaceae), identified from the ethnomedicine of the Nigerian Middle Belt. J. Parasitol. Res. 2014, 1–7 (2014).Article 

Google Scholar 
Probst, A. J., Auerbach, A. K. & Moissl-Eichinger, C. Archaea on human skin. PLoS One 8, e65388 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Köberl, M., Müller, H., Ramadan, E. M. & Berg, G. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 6, e24452 (2011).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols (Academic Press Inc., 1990).
Google Scholar 
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108, 4516–4522 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).Article 
CAS 
PubMed 

Google Scholar 
Fitzpatrick, C. R. et al. Chloroplast sequence variation and the efficacy of peptide nucleic acids for blocking host amplification in plant microbiome studies. Microbiome 6, 141–154 (2018).Article 

Google Scholar 
Olimi, E. et al. Deciphering the microbial composition of biodynamic preparations and their effects on the apple rhizosphere microbiome. Front. Soil Sci. 2, 1020869 (2022).Article 

Google Scholar 
Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).Article 
CAS 
PubMed 

Google Scholar 
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

Google Scholar 
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 1–22 (2016).
Google Scholar 
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 

Google Scholar 
Yilmaz, P. et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, 643–648 (2014).Article 

Google Scholar 
Abarenkov, K. et al. The UNITE database for molecular identification of fungi—Recent updates and future perspectives. New Phytol. 186, 281–285 (2018).Article 

Google Scholar 
Chong, J., Liu, P., Zhou, G. & Xia, J. Using microbiomeanalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821 (2020).Article 
CAS 
PubMed 

Google Scholar 
McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yashiro, E., Spear, R. N. & Mcmanus, P. S. Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere. J. Appl. Microbiol. 110, 1284–1296 (2011).Article 
CAS 
PubMed 

Google Scholar 
Mateos, M. et al. Heritable endosymbionts of drosophila. Genetics 174, 363–376 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorith for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).Article 
CAS 
PubMed 

Google Scholar 
Kim, M., Oh, H. S., Park, S. C. & Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Intl. J. Syst. Evol. Microbiol. 64, 346–351 (2014).Article 
CAS 

Google Scholar 
Hall, B. G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 30, 1229–1235 (2013).Article 
CAS 
PubMed 

Google Scholar 
Letunic, I. & Gmbh, B. S. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, 293–296 (2021).Article 

Google Scholar 
Kamel, M. M. Thermotolerant coliform and Escherichia coli detection and enumeration through multiple tube fermentation. J. Med. Sci. 6, 125–130 (2006).Article 

Google Scholar 
Dockins, W. S. & McFeters, G. A. Fecal coliform elevated temperature test: A physiological basis. Appl. Environ. Microbiol. 36, 341–348 (1978).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Harborne, J. B. Phytochemical Methods: A Guide to Modern Techniques of Plabt Analysis 2nd edn. (Chapman and Hall, 1984).Book 

Google Scholar 
Bao, L. et al. Distinct microbial community of phyllosphere associated with five tropical plants on Yongxing Island, South China Sea. Microorganisms 7, 1–17 (2019).Article 

Google Scholar 
Chelius, M. K. & Triplett, E. W. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41, 252–263 (2001).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Taffner, J. et al. What is the role of archaea in plants? New insights from the vegetation of alpine bogs. mSphere https://doi.org/10.1128/mSphere.00122-18 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Moissl-Eichinger, C. et al. Archaea are interactive components of complex microbiomes. Trends Microbiol. 26, 70–85 (2018).Article 
CAS 
PubMed 

Google Scholar 
Müller, H. et al. Plant genotype-specific archaeal and bacterial endophytes but similar bacillus antagonists colonize mediterranean olive trees. Front. Microbiol. 6, 1–9 (2015).Article 

Google Scholar 
Knief, C., Chaffron, S., Stark, M. & Innerebner, G. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390 (2012).Article 
CAS 
PubMed 

Google Scholar 
Chiellini, C. et al. Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia. Int. Microbiol. 17, 165–174 (2014).CAS 
PubMed 

Google Scholar 
Mocali, S., Bertelli, E., Di, F. & Mengoni, A. Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res. Microbiol. 154, 105–114 (2003).Article 
PubMed 

Google Scholar 
Jackson, C. R., Randolph, K. C., Osborn, S. L. & Tyler, H. L. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol. 13, 1–12 (2013).Article 

Google Scholar 
Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6, 1812–1822 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thapa, S., Prasanna, R., Ranjan, K., Velmourougane, K. & Ramakrishnan, B. Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice. Microbiol. Res. 204, 55–64 (2017).Article 
CAS 
PubMed 

Google Scholar 
Lamb, T. G., Tonkyn, D. W. & Kluepfel, D. A. Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue1. Can. J. Microbiol. 42, 1112–1120 (1996).Article 
CAS 

Google Scholar 
Sohrabi, R., Paasch, B. C., Liber, J. A. & He, S. Y. Phyllosphere microbiome. Annu. Rev. Plant Biol. 74, 539–568 (2023).Article 
CAS 
PubMed 

Google Scholar 
Li, P. D. et al. The phyllosphere microbiome shifts toward combating melanose pathogen. Microbiome 10, 1–17 (2022).Article 

Google Scholar 
Innerebner, G., Knief, C. & Vorholt, J. A. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–3210 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, X., Wicaksono, W. A., Berg, G. & Cernava, T. Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide. Sci. Total Environ. 751, 141799 (2021).Article 
CAS 
PubMed 

Google Scholar 
Bao, L. et al. Microbial community overlap between the phyllosphere and rhizosphere of three plants from Yongxing Island, South China Sea. . Microbiol. Open 9, e1048 (2020).Article 
CAS 

Google Scholar 
Lundberg, D. S., De, P. R., Pramoj, P., Ayutthaya, N. & Karasov, T. L. Contrasting patterns of microbial dominance in the Arabidopsis thaliana phyllosphere. PNAS 119, 1–11 (2022).Article 

Google Scholar 
Adi Wicaksono, W. et al. Phyllosphere-associated microbiota in built environment: Do they have the potential to antagonize human pathogens?. J. Adv. Res. 43, 109–121 (2023).Article 
CAS 
PubMed 

Google Scholar 
Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. U. S. A. 106, 16428–16433 (2009).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sahu, K. P. et al. Integrated metabarcoding and culturomic-based microbiome profiling of rice phyllosphere reveal diverse and functional bacterial communities for blast disease suppression. Front. Microbiol. 12, 1–21 (2021).Article 

Google Scholar 
Qin, C. et al. Responses of phyllosphere microbiota and plant health to application of two different biocontrol agents. AMB Express 9, 42 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Bashir, I. et al. Phyllosphere microbiome: Diversity and functions. Microbiol. Res. 254, 126888 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, J. et al. Plant identity shapes phyllosphere microbiome structure and abundance of genes involved in nutrient cycling. Sci. Total Environ. 865, 161245 (2023).Article 
CAS 
PubMed 

Google Scholar 
Liu, J. et al. Differences in phyllosphere microbiomes among different Populus spp. in the same habitat. Front. Plant Sci. 14, 1–12 (2023).
Google Scholar 
Meyer, K. M. et al. Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. ISME J. 16, 1376–1387 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Brandl, M. T. et al. Weather factors, soil microbiome, and bacteria–fungi interactions as drivers of the epiphytic phyllosphere communities of romaine lettuce. Food Microbiol. 113, 104260 (2023).Article 
CAS 
PubMed 

Google Scholar 
Williams, T. R., Moyne, A. L., Harris, L. J. & Marco, M. L. Season, irrigation, leaf age, and Escherichia coli Inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One 8, 1–14 (2013).
Google Scholar 
Cernava, T. et al. Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill.). Microbiome 7, 1–12 (2019).Article 

Google Scholar 
Rossmann, B. et al. Banana-associated microbial communities in Uganda are highly diverse but dominated by Enterobacteriaceae. Appl. Environ. Microbiol. 78, 4933–4941 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Finkel, O. M., Burch, A. Y., Lindow, S. E., Post, A. F. & Belkin, S. Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl. Environ. Microbiol. 77, 7647–7655 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, Y. et al. Impacts of global change on the phyllosphere microbiome. New Phytol. 234, 1977–1986 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Eldridge, D. J. et al. Experimental evidence of strong relationships between soil microbial communities and plant germination. J. Ecol. 109, 2488–2498 (2021).Article 

Google Scholar 
Singh, P., Santoni, S., This, P. & Peros, J.-P. Genotype-environment interaction shapes the microbial assemblage in grapevine’s phyllosphere and carposphere : An NGS approach. Microorganisms 6, 96 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abdelfattah, A., Wisniewski, M., Schena, L. & Tack, A. J. M. Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environ. Microbiol. 23, 2199–2214 (2021).Article 
CAS 
PubMed 

Google Scholar 
Shakir, S., Zaidi, S. S., de Vries, F. T. & Mansoor, S. Trends in genetics plant genetic networks shaping phyllosphere microbial community. Trends Genet. 37, 306–316 (2020).Article 
PubMed 

Google Scholar 
Zhou, S. et al. Microbial flow within an air-phyllosphere-soil continuum. Front. Microbiol. 11, 1–10 (2021).Article 

Google Scholar 
Li, J. F. et al. First Report of Pseudomonas oryzihabitans causing stem and leaf rot on muskmelon in China. Plant Dis. 105, 2713 (2021).Article 

Google Scholar 
Hou, Y. et al. First report of Pseudomonas oryzihabitans causing rice panicle blight and grain discoloration in China. Plant Dis. 104, 3055 (2020).Article 

Google Scholar 
Vagelas, I. & Gowen, S. R. Control of Fusarium oxysporum and root-knot nematodes (Meloidogyne spp.) with Pseudomonas oryzihabitans. Pak. J. Phytopathol. 1, 32–38 (2012).
Google Scholar 
Cantabella, D. et al. Optimization of a food industry-waste-based medium for the production of the plant growth promoting microorganism Pseudomonas oryzihabitans PGP01 based on agro-food industries by-products. Biotechnol. Rep. 32, e00675 (2021).Article 
CAS 

Google Scholar 
Agelas, I. K. V., Embroke, B. P., Owen, S. R. G. & Avies, K. G. D. The control of root-knot nematodes (Meloidogyne spp.) by Pseudomonas oryzihabitans and its immunological detection on tomato roots. Nematology 9, 363–370 (2007).Article 

Google Scholar 
Brady, C. L. et al. Pantoea allii sp. nov., isolated from onion plants and seed. Int. J. Syst. Evol. Microbiol. 61, 932–937 (2011).Article 
CAS 
PubMed 

Google Scholar 
Kyeon, M. et al. Xanthomonas euvesicatoria causes bacterial spot disease on pepper plant in Korea. Plant Pathol. J. 32, 431–440 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abrahamian, P., Klein-Gordon, J. M., Jones, J. B. & Vallad, G. E. Epidemiology, diversity, and management of bacterial spot of tomato caused by Xanthomonas perforans. Appl. Microbiol. Biotechnol. 105, 6143–6158 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ikeda, A. C. et al. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb. Ecol. 65, 154–160 (2013).Article 
ADS 
PubMed 

Google Scholar 
Jin, H. et al. Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L.. Syst. Appl. Microbiol. 37, 376–385 (2014).Article 
PubMed 

Google Scholar 
Gagne-Bourgue, F. et al. Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J. Appl. Microbiol. 114, 836–853 (2013).Article 
CAS 
PubMed 

Google Scholar 
Wang, L. et al. Pseudomonas taiwanensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 60, 2094–2098 (2010).Article 
PubMed 

Google Scholar 
Qin, S., Xing, K., Jiang, J. & Xu, L. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl. Microbiol. Biotechnol. 89, 457–473 (2011).Article 
CAS 
PubMed 

Google Scholar 
Pugh, N. D., Jackson, C. R. & Pasco, D. S. Total bacterial load within Echinacea purpurea, determined using a new PCR-based quantification method, is correlated with LPS levels and in vitro macrophage activity. Planta Med. 79, 9–14 (2013).CAS 
PubMed 

Google Scholar 
Coker, M. E., Oaikhena, A. O. & Ajayi, T. O. Antimicrobial activity of extracts and fractions of Euphorbia lateriflora (Schum and Thonn) on microbial isolates of the urinary tract. Saudi J. Biol. Sci. 28, 4723–4731 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles