Hepatitis C virus infection and Parkinson’s disease: insights from a joint sex-stratified BioOptimatics meta-analysis

Yaow, C. Y. L. et al. Risk of Parkinson’s disease in hepatitis B and C populations: a systematic review and meta-analysis. J. Neural Transm. 1, 1. https://doi.org/10.1007/S00702-023-02705-7 (2023).Article 

Google Scholar 
Wang, H. et al. Bacterial, viral, and fungal infection-related risk of Parkinson’s disease: Meta-analysis of cohort and case–control studies. Brain Behav.10 (3), e01549. https://doi.org/10.1002/BRB3.1549 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Lin, W. Y. et al. Association of antiviral therapy with risk of Parkinson Disease in patients with chronic Hepatitis C virus infection. JAMA Neurol.76 (9), 1019–1027. https://doi.org/10.1001/JAMANEUROL.2019.1368 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Su, T. et al. Antiviral therapy in patients with chronic hepatitis C is associated with a reduced risk of parkinsonism. Mov. Disord.https://doi.org/10.1002/mds.27848 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Wilkinson, J., Radkowski, M. & Laskus, T. Hepatitis C virus neuroinvasion: identification of infected cells. J. Virol.83 (3), 1312–1319. https://doi.org/10.1128/JVI.01890-08 (2009).Article 
CAS 
PubMed 

Google Scholar 
Forton, D. M. et al.  Evidence for a cerebral effect of the hepatitis C virus. Lancet 358(9275), 38–39. https://doi.org/10.1016/S0140-6736(00)05270-3  (2001).Dorsey, E. R., Sherer, T., Okun, M. S. & Bloemd, B. R. The emerging evidence of the Parkinson pandemic. J. Parkinsons Dis.8, S3–S8. https://doi.org/10.3233/JPD-181474 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Nalls, M. A., Blauwendraat, C., Vallerga, C. L. & Heilbron, K. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-genome wide association study. Physiol. Behav. 176(1), 139–148. Accessed: Oct. 01, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474442219303205 (2016).Smeyne, R. J., Noyce, A. J., Byrne, M., Savica, R. & Marras, C. Infection and risk of Parkinson’s Disease. J. Parkinsons Dis.11 (1), 31–43. https://doi.org/10.3233/JPD-202279 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wolfe, M. The molecular and cellular basis of neurodegenerative diseases: underlying mechanisms. Accessed: Oct. 01, 2022. [Online]. Available. https://books.google.com/books?hl (2018).Harry, G. J. & Kraft, A. D. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol.4 (10), 1265–1277. https://doi.org/10.1517/17425255.4.10.1265 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Camacho-Cáceres, K. I. et al. Multiple criteria optimization joint analyses of microarray experiments in lung cancer: from existing microarray data to new knowledge. Cancer Med.4 (12), 1884–1900. https://doi.org/10.1002/cam4.540 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Isaza, C. et al. Biological signaling pathways and potential mathematical network representations: biological discovery through optimization. Cancer Med. 7(5), 1875–1895. https://doi.org/10.1002/cam4.1301 (2018).Narváez-Bandera, I., Suárez-Gómez, D., Isaza, C. E. & Cabrera-Ríos, M. Multiple criteria optimization (MCO): a gene selection deterministic tool in RStudio. PLoS One. 17 (1), e0262890. https://doi.org/10.1371/JOURNAL.PONE.0262890 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res.49, D605–D612. https://doi.org/10.1093/NAR/GKAA1074 (2021).Article 
CAS 
PubMed 

Google Scholar 
Vallese, F. et al. Architecture of the human erythrocyte ankyrin-1 complex. Nat. Struct. Mol. Biol.29 (7), 706. https://doi.org/10.1038/S41594-022-00792-W (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, L., Shu, H., Zhou, M. & Gong, Y. Literature review on genotype–phenotype correlation in patients with hereditary spherocytosis. Clin. Genet.102 (6), 474–482. https://doi.org/10.1111/CGE.14223 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wu, J., Cao, J., Fan, Y., Li, C. & Hu, X. Comprehensive analysis of miRNA–mRNA regulatory network and potential drugs in chronic chagasic cardiomyopathy across human and mouse. BMC Med. Genomics. 14 (1), 1–13. https://doi.org/10.1186/S12920-021-01134-3/FIGURES/7 (2021).Article 
CAS 

Google Scholar 
Kim, J., Lee, K., Jeon, Y. & Oh, J., Identification of genes related to Parkinson’s disease using expressed sequence tags. academic.oup.com, Accessed: Mar. 12, 2022. [Online]. Available. https://academic.oup.com/dnaresearch/article-abstract/13/6/275/464485 (2006).Loeffler, D. A., Camp, D. M. & Conant, S. B. Complement activation in the Parkinson’s disease substantia nigra: an immunocytochemical study. J. Neuroinflammation. 3 (1), 1–8. https://doi.org/10.1186/1742-2094-3-29/FIGURES/5 (2006).Article 

Google Scholar 
Liu, C. Z. et al. Correlation of matrix metalloproteinase 3 and matrix metalloproteinase 9 levels with nonmotor symptoms in patients with Parkinson’s disease. Front. Aging Neurosci.14, 889257. https://doi.org/10.3389/FNAGI.2022.889257/BIBTEX (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Park, H. et al. IL-29 is the Dominant type III Interferon produced by Hepatocytes during Acute Hepatitis C virus infection. https://doi.org/10.1002/hep.25897 (2012).Zhang, S. et al. The effect and mechanism of metallothionein MT1M on hepatocellular carcinoma cell. Eur. Rev. Med. Pharmacol. Sci. europeanreview.org, Accessed: Oct. 02, 2023. [Online]. Available: http://www.europeanreview.org/wp/wp-content/uploads/695-701.pdf (2018).Ye, Y., Yu, B., Wang, H. & Yi, F. Glutamine metabolic reprogramming in hepatocellular carcinoma. Front. Mol. Biosci.10. https://doi.org/10.3389/FMOLB.2023.1242059 (2023).Zhu, X. B. et al. Identifying and exploring the candidate susceptibility genes of cirrhosis using the multi-tissue transcriptome-wide Association study. Front. Genet.13. https://doi.org/10.3389/FGENE.2022.878607/FULL (2022).Wang, Q. et al. Sex-specific circulating unconventional neutrophils determine immunological outcome of autoinflammatory Behçet’s uveitis. Cell. Discov. 10(1).  https://doi.org/10.1038/S41421-024-00671-2 (2024).Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol.16 (10), 626–638. https://doi.org/10.1038/NRI.2016.90 (2016).Article 
CAS 
PubMed 

Google Scholar 
Ruggieri, A., Gagliardi, M. C. & Anticoli, S. Sex-dependent outcome of hepatitis B and C viruses infections: synergy of sex hormones and immune responses? Front. Immunol. 9, 1. https://doi.org/10.3389/FIMMU.2018.02302/FULL (2018).Safran, M. et al. The GeneCards suite. Practical Guide to Life Science Databases, pp. 27–56. https://doi.org/10.1007/978-981-16-5812-9_2 (2021).Willis, A. W. et al. Incidence of Parkinson disease in North America. NPJ Parkinsons Dis.8, 1. https://doi.org/10.1038/S41531-022-00410-Y (2022).Article 

Google Scholar 
Miller, S. C., MacDonald, C. C., Kellogg, M. K., Karamysheva, Z. N. & Karamyshev, A. L. Specialized ribosomes in Health and Disease. Int. J. Mol. Sci. 24(7), 1. https://doi.org/10.3390/IJMS24076334 (2023).Panda, A. et al. Tissue-and development-stage–specific mRNA and heterogeneous CNV signatures of human ribosomal proteins in normal and cancer samples. Nucleic Acids Res. 48(13), 7079–7098. https://doi.org/10.1093/nar/gkaa485 (2020).Kander, M. & Cui, Y. -J. of cellular and molecular, and undefined 2017, ‘Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases’. J. Cell. Mol. Med.21 (5), 1024–1032. https://doi.org/10.1111/jcmm.13038 (2017).Article 
PubMed 

Google Scholar 
Tower, J., Pomatto, L. C. D. & Davies, K. J. A. Sex differences in the response to oxidative and proteolytic stress. Redox Biol. 31, 1. https://doi.org/10.1016/J.REDOX.2020.101488 (2020).Saadoun, D. et al. Role of Matrix metalloproteinases, Proinflammatory cytokines, and oxidative stress-derived molecules in Hepatitis C Virus-Associated mixed Cryoglobulinemia Vasculitis Neuropathy. Arthritis Rheum.56 (4), 1315–1324. https://doi.org/10.1002/art.22456 (2007).Article 
CAS 
PubMed 

Google Scholar 
Tong, Z. B., Braisted, J., Chu, P. H. & Gerhold, D. The MT1G gene in LUHMES neurons is a sensitive biomarker of neurotoxicity. Neurotox. Res.38 (4), 967–978. https://doi.org/10.1007/s12640-020-00272-3 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kinast, V. et al. Identification of keratin 23 as a Hepatitis C Virus-Induced host factor in the Human Liver. Cells 2019. 8 (6), 610. https://doi.org/10.3390/CELLS8060610 (2019). Page 610.Article 
CAS 

Google Scholar 
Hinkle, J. T. et al. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proc. Natl. Acad. Sci. U S A. 119 (15), e2118. https://doi.org/10.1073/PNAS.2118819119/SUPPL_FILE/PNAS.2118819119.SM04.MOV (2022).Article 

Google Scholar 
Duan, Z. et al. The association of ribosomal protein L18 with Newcastle disease virus matrix protein enhances viral translation and replication. 51(2), 129–140. https://doi.org/10.1080/03079457.2021.2013435 (2022).Xie, J. et al. Inflammation and oxidative stress role of S100A12 as a potential diagnostic and therapeutic biomarker in Acute myocardial infarction. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2022/2633123 (2022).Li, H. et al. Identification and verification of ubiquitin D as a gene associated with hepatitis C virus-induced hepatocellular carcinoma. https://doi.org/10.1159/000525543 (2022).Player, J. K., Riordan, S. M., Duncan, R. S. & Koulen, P. Analysis of Glaucoma associated genes in response to inflammation, an examination of a public data set derived from peripheral blood from patients with hepatitis C. Clin. Ophthalmol. 16,2022. https://doi.org/10.2147/OPTH.S364739 (2093).Webb, L. G. & Fernandez-Sesma, A. RNA viruses and the cGAS-STING pathway: reframing our understanding of innate immune sensing. Curr. Opin. Virol.53, 101206. https://doi.org/10.1016/J.COVIRO.2022.101206 (2022).Article 
CAS 
PubMed 

Google Scholar 
Neufeldt, C. J. et al. Hepatitis C Virus-Induced cytoplasmic organelles use the Nuclear Transport Machinery to establish an Environment Conducive to Virus Replication. PLoS Pathog. 9(10). https://doi.org/10.1371/JOURNAL.PPAT.1003744 (2013).Barba, G. et al. Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets (1997). [Online]. Available: https://doi.org/www.pnas.org.Dhar, D. et al. Human ribosomal protein L18a interacts with hepatitis C virus internal ribosome entry site. Arch. Virol.151 (3), 509–524. https://doi.org/10.1007/s00705-005-0642-6 (2006).Article 
CAS 
PubMed 

Google Scholar 
Glaab, E. & Schneider, R. Comparative pathway and network analysis of brain transcriptome changes during adult aging and in Parkinson’s disease. Neurobiol. Dis.74, 1–13. https://doi.org/10.1016/j.nbd.2014.11.002 (2015).Article 
CAS 
PubMed 

Google Scholar 
Moretti, R. et al. Hepatitis C Virus-Related Central and Peripheral Nervous System disorders. Brain Sci. 2021. 11, Page 1569, 11, (12), 1569. https://doi.org/10.3390/BRAINSCI11121569 (2021).Article 

Google Scholar 
Miric, D., Nahum, S., Jibidar, H. & Lezy-Mathieu, A. M. Vascular parkinsonism in an elderly woman with mixed cryoglobulinemia associated with hepatitis C infection. J. Am. Geriatr. Soc.54 (11), 1798–1798. https://doi.org/10.1111/J.1532-5415.2006.00932.X (2006).Article 
PubMed 

Google Scholar 
Kattoor, A. J., Pothineni, N. V. K., Palagiri, D. & Mehta, J. L. Oxidative stress in atherosclerosis. Curr. Atheroscler Rep. 19(11). https://doi.org/10.1007/S11883-017-0678-6 (2017).Chang, K. H. & Chen, C. M. The role of oxidative stress in Parkinson’s disease. Antioxidants 9, 597. https://doi.org/10.3390/ANTIOX9070597 (2020).Choi, M. L. et al. Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity. Nat. Neurosci.25 (9), 1134–1148. https://doi.org/10.1038/S41593-022-01140-3 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Subramaniam, S. R. & Chesselet, M. F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 106–107. https://doi.org/10.1016/J.PNEUROBIO.2013.04.004 (2013).Ismail, S. A. et al. Study of glutathion peroxidase (GPX) enzyme level in patients with chronic hepatitis C virus. AAMJ 3(2) (2005).Fan, Y. G. et al. ‘From zinc homeostasis to disease progression: unveiling the neurodegenerative puzzle’, Pharmacological Research, vol. 199. Academic, Jan. 01, doi: https://doi.org/10.1016/j.phrs.2023.107039. (2024).Masliah, E., Dumaop, W., Galasko, D. & Desplats, P. Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics 8(10), 1030–1038. https://doi.org/10.4161/EPI.25865 (2013).Vlachos, N., Lampros, M. G., Lianos, G. D., Voulgaris, S. & Alexiou, G. A. Blood biomarkers for predicting coagulopathy occurrence in patients with traumatic brain injury: a systematic review. 16(12), 935–945. https://doi.org/10.2217/BMM-2022-0294 (2022).Delic, V., Beck, K. D., Pang, K. C. H. & Citron, B. A. Biological links between traumatic brain injury and Parkinson’s disease. Acta Neuropathol. Commun.  8(1), 1–16. https://doi.org/10.1186/S40478-020-00924-7 (2020).Brett, B. L., Gardner, R. C., Godbout, J., Dams-O’Connor, K. & Keene, C. D. Traumatic brain injury and risk of neurodegenerative disorder. Biol. Psychiatry 91(5), 498–507. https://doi.org/10.1016/J.BIOPSYCH.2021.05.025 (2022).Rojas, A., Lindner, C., Schneider, I., Gonzalez, I. & Uribarri, J. The RAGE axis: A relevant inflammatory hub in human diseases. Biomolecules 14(4). https://doi.org/10.3390/biom14040412 (2024).González-Reimers, E. et al. Thrombin activation and liver inflammation in advanced hepatitis C virus infection. World J. Gastroenterol.22 (18), 4427–4437. https://doi.org/10.3748/wjg.v22.i18.4427 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pretorius, E., Page, M. J., Mbotwe, S. & Kell, D. B. Lipopolysaccharide-binding protein (LBP) can reverse the amyloid state of fibrin seen or induced in Parkinson’s disease. PLoS One. 13 (3), e0192121. https://doi.org/10.1371/JOURNAL.PONE.0192121 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Galea, I. The blood–brain barrier in systemic infection and inflammation. Cell. Mol. Immunol. 18(11), 2489–2501. https://doi.org/10.1038/s41423-021-00757-x (2021).Kwon, H. S. & Koh, S. H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegen. 9(1), 1–12. https://doi.org/10.1186/S40035-020-00221-2 (2020).Mutez, E. et al. Involvement of the immune system, endocytosis and EIF2 signaling in both genetically determined and sporadic forms of Parkinson’s disease. Neurobiol. Dis.63, 165–170. https://doi.org/10.1016/j.nbd.2013.11.007 (2014).Article 
CAS 
PubMed 

Google Scholar 
Falchetti, M., Prediger, R. D. & Zanotto-Filho, A. Classification algorithms applied to blood-based transcriptome meta-analysis to predict idiopathic Parkinson’s disease. Comput. Biol. Med.124, 103925. https://doi.org/10.1016/j.compbiomed.2020.103925 (2020).Article 
CAS 
PubMed 

Google Scholar 
Salazar, J. et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc. Natl. Acad. Sci. U S A. 105 (47), 18578–18583. https://doi.org/10.1073/PNAS.0804373105 (2008).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kramer, D. & Piper, H. B. C.-E. WASP family proteins: Molecular mechanisms and implications in human disease. Elsevier, Accessed: Oct. 02, 2023. [Online]. J. Cell Biol. Available: https://www.sciencedirect.com/science/article/pii/S0171933522000474.Fernández-Calleja, V., Fernández-Nestosa, M. J., Hernández, P., Schvartzman, J. B. & Krimer, D. B. CRISPR/Cas9-mediated deletion of the Wiskott-Aldrich syndrome locus causes actin cytoskeleton disorganization in murine erythroleukemia cells. PeerJ 7(1). https://doi.org/10.7717/PEERJ.6284 (2019).Lim, V. Y., Zehentmeier, S., Fistonich, C. & Pereira, J. P. A chemoattractant-guided Walk through Lymphopoiesis: from hematopoietic stem cells to mature B lymphocytes. Adv. Immunol.134, 47–88. https://doi.org/10.1016/BS.AI.2017.02.001 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Satoh, J. I., Asahina, N., Kitano, S. & Kino, Y. Profile of ChIP-Seq-based PU.1/Spi1 target genes in Microglia. Gene Regul. Syst. Bio. 8, 127–139. https://doi.org/10.4137/GRSB.S19711 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Sato, M., Ogihara, K., Sawahata, R., Sekikawa, K. & Kitani, H. Impaired LPS-induced signaling in microglia overexpressing the Wiskott–Aldrich syndrome protein N-terminal domain. Int. Immunol.19 (8), 901–911. https://doi.org/10.1093/INTIMM/DXM074 (2007).Article 
CAS 
PubMed 

Google Scholar 
Qian, L. & Flood, P. M. Microglia and Parkinson’s disease. Immunol. Res.41 (3), 155–164. https://doi.org/10.1007/S12026-008-8018-0 (2008).Article 
CAS 
PubMed 

Google Scholar 
Sowell, R. A., Owen, J. B. & Allan Butterfield, D. Proteomics in animal models of Alzheimer’s and Parkinson’s diseases. Aging Res. Rev.8 (1), 1–17. https://doi.org/10.1016/J.ARR.2008.07.003 (2009).Article 
CAS 

Google Scholar 
Lamontagne-Proulx, J. et al. Portrait of blood-derived extracellular vesicles in patients with Parkinson’s disease. Neurobiol. Dis.124, 163–175. https://doi.org/10.1016/J.NBD.2018.11.002 (2019).Article 
CAS 
PubMed 

Google Scholar 
Martorella, M., Barford, K., Winckler, B. & Deppmann, C. D. Emergent role of coronin-1a in neuronal signaling. Vit. Horm. 104, 113–131. https://doi.org/10.1016/BS.VH.2016.10.002 (2017).Montaldo, C. et al. Fibrogenic signals persist in DAA-treated HCV patients after sustained virological response. J. Hepatol.75 (6), 1301–1311. https://doi.org/10.1016/J.JHEP.2021.07.003 (2021).Article 
CAS 
PubMed 

Google Scholar 
Pandey, H. S., Kapoor, R., Bindu & Seth, P. Coronin 1A facilitates calcium mobilization and promotes astrocyte reactivity in HIV-1 neuropathogenesis. FASEB Bioadv. 4(4), 254–272. https://doi.org/10.1096/FBA.2021-00109 (2022).Xia, X., Wang, Y. & Zheng, J. C. Extracellular vesicles, from the pathogenesis to the therapy of neurodegenerative diseases. Transl. Neurodegener. 11(1). https://doi.org/10.1186/S40035-022-00330-0 (2022).Schejter, Y. D., Mandola, A. & Reid, B. Coronin 1A deficiency identified by newborn screening for severe combined immunodeficiency. 6(1), 17–25. https://doi.org/10.14785/LYMPHOSIGN-2019-0001 (2019).Kaul, S. et al. Tyrosine phosphorylation regulates the proteolytic activation of protein kinase cdelta in dopaminergic neuronal cells. J. Biol. Chem.280 (31), 28721–28730. https://doi.org/10.1074/JBC.M501092200 (2005).Article 
CAS 
PubMed 

Google Scholar 
Zhou, Q. et al. Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target. Front. Med.16 (5), 723–735. https://doi.org/10.1007/S11684-021-0905-Y/METRICS (2022).Article 
PubMed 

Google Scholar 
Davis, S. & Bioinformatics, P. M.  GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. academic.oup.com 23(14), 1846–1847. https://doi.org/10.1093/bioinformatics/btm254 (2007).Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res.   47(8), 1. https://doi.org/10.1093/nar/gkz114 (2019).Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140. https://doi.org/10.1093/BIOINFORMATICS/BTP616 (2010).Carlson, N., Falcon, M., Pages, S. & Li H., org.Hs.eg.db: Genome wide annotation for Human. R package version, vol. 3, no. 2, p. 3 (2019).Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11(3), 1. https://doi.org/10.1186/GB-2010-11-3-R25 (2010).

Hot Topics

Related Articles