A guide to single-particle tracking

Delarue, M. et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174, 338–349.e20 (2018).Article 

Google Scholar 
Ptacin, J. L. et al. Bacterial scaffold directs pole-specific centromere segregation. Proc. Natl Acad. Sci. USA 111, E2046–E2055 (2014).Article 

Google Scholar 
Laurent, F. et al. Mapping spatio-temporal dynamics of single biomolecules in living cells. Phys. Biol. 17, 015003 (2019).Article 
ADS 

Google Scholar 
Elf, J. & Barkefors, I. Single-molecule kinetics in living cells. Annu. Rev. Biochem. 88, 635–659 (2019).Article 

Google Scholar 
Kapanidis, A. N., Uphoff, S. & Stracy, M. Understanding protein mobility in bacteria by tracking single molecules. J. Mol. Biol. 430, 4443–4455 (2018).Article 

Google Scholar 
Shashkova, S. & Leake, M. C. Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci. Rep. 37, BSR20170031 (2017).Article 

Google Scholar 
Tuson, H. H. & Biteen, J. S. Unveiling the inner workings of live bacteria using super-resolution microscopy. Anal. Chem. 87, 42–63 (2015).Article 

Google Scholar 
Heyza, J. R., Mikhova, M. & Schmidt, J. C. Live cell single-molecule imaging to study DNA repair in human cells. DNA Repair 129, 103540 (2023).Article 

Google Scholar 
Brown, R. Mikroskopische Beobachtungen über die im Pollen der Pflanzen enthaltenen Partikeln, und über das allgemeine Vorkommen activer Molecüle in organischen und unorganischen Körpern. Ann. Phys. 90, 294–313 (1828).Article 

Google Scholar 
Kapanidis, A. N., Lepore, A. & El Karoui, M. Rediscovering bacteria through single-molecule imaging in living cells. Biophys. J. 115, 190–202 (2018).Article 
ADS 

Google Scholar 
Gahlmann, A. & Moerner, W. E. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat. Rev. Microbiol. 12, 9–22 (2014).Article 

Google Scholar 
Liao, Y. et al. Polymerase dynamics at a bacterial replisome in live cells. Biophys. J. 111, 2562–2569 (2016).Article 
ADS 

Google Scholar 
Katz, Z. B. et al. Mapping translation ‘hot-spots’ in live cells by tracking single molecules of mRNA and ribosomes. eLife 5, e10415 (2016).Article 

Google Scholar 
Mickolajczyk, K. J. & Hancock, W. O. Kinesin processivity is determined by a kinetic race from a vulnerable one-head-bound state. Biophys. J. 112, 2615–2623 (2017).Article 
ADS 

Google Scholar 
Monnier, N. et al. Inferring transient particle transport dynamics in live cells. Nat. Methods 12, 838–840 (2015).Article 

Google Scholar 
Vagnoni, A. & Bullock, S. L. A cAMP/PKA/kinesin-1 axis promotes the axonal transport of mitochondria in aging Drosophila neurons. Curr. Biol. 28, 1265–1272.e4 (2018).Article 

Google Scholar 
Milenkovic, L. et al. Single-molecule imaging of Hedgehog pathway protein smoothened in primary cilia reveals binding events regulated by Patched1. Proc. Natl Acad. Sci. USA 112, 8320–8325 (2015).Article 
ADS 

Google Scholar 
Oswald, F., Varadarajan, A., Lill, H., Peterman, E. J. G. & Bollen, Y. J. M. MreB-dependent organization of the E. coli cytoplasmic membrane controls membrane protein diffusion. Biophys. J. 110, 1139–1149 (2016).Article 
ADS 

Google Scholar 
Lenne, P.-F. et al. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25, 3245–3256 (2006).Article 

Google Scholar 
Höfling, F. & Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 76, 046602 (2013).Article 
ADS 
MathSciNet 

Google Scholar 
Chechkin, A. V., Hofmann, M. & Sokolov, I. M. Continuous-time random walk with correlated waiting times. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 031112 (2009).Article 
ADS 
MathSciNet 

Google Scholar 
Beattie, T. R. et al. Frequent exchange of the DNA polymerase during bacterial chromosome replication. eLife 6, e21763 (2017).Article 

Google Scholar 
Stracy, M. et al. Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli. Nat. Commun. 7, 12568 (2016).Article 
ADS 

Google Scholar 
Vigouroux, A., Oldewurtel, E., Cui, L., Bikard, D. & van Teeffelen, S. Tuning dCas9’s ability to block transcription enables robust, noiseless knockdown of bacterial genes. Mol. Syst. Biol. 14, e7899 (2018).Article 

Google Scholar 
Izeddin, I. et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3, e02230 (2014).Article 

Google Scholar 
Uphoff, S. Super-resolution microscopy and tracking of DNA-binding proteins in bacterial cells. Methods Mol. Biol. 1431, 221–234 (2016).Article 

Google Scholar 
Pierobon, P. et al. Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biophys. J. 96, 4268–4275 (2009).Article 
ADS 

Google Scholar 
Özbaykal, G. et al. The transpeptidase PBP2 governs initial localization and activity of the major cell-wall synthesis machinery in E. coli. eLife 9, e50629 (2020).Article 

Google Scholar 
Cho, H. et al. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 1, 16172 (2016).Article 

Google Scholar 
Domínguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228 (2011).Article 
ADS 

Google Scholar 
Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011).Article 
ADS 

Google Scholar 
van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl Acad. Sci. USA 108, 15822–15827 (2011).Article 
ADS 

Google Scholar 
Du, X. et al. Insights into protein–ligand interactions: mechanisms, models, and methods. Int. J. Mol. Sci. 17, 144 (2016).Article 

Google Scholar 
Simon, F., Tinevez, J.-Y. & van Teeffelen, S. ExTrack characterizes transition kinetics and diffusion in noisy single-particle tracks. J. Cell Biol. 222, e202208059 (2023).Article 

Google Scholar 
Icha, J., Weber, M., Waters, J. C. & Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays 39, 1700003 (2017).Article 

Google Scholar 
Weiss, L. E., Naor, T. & Shechtman, Y. Observing DNA in live cells. Biochem. Soc. Trans. 46, 729–740 (2018).Article 

Google Scholar 
Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).Article 

Google Scholar 
Dunsby, C. Optically sectioned imaging by oblique plane microscopy. Opt. Expr. 16, 20306–20316 (2008).Article 
ADS 

Google Scholar 
Ambrose, E. J. A surface contact microscope for the study of cell movements. Nature 178, 1194 (1956).Article 
ADS 

Google Scholar 
Axelrod, D. Cell–substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 141–145 (1981).Article 

Google Scholar 
Voie, A. H., Burns, D. H. & Spelman, F. A. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170, 229–236 (1993).Article 

Google Scholar 
Kreplin, L. Z. & Arumugam, S. High-resolution light-sheet microscopy for whole-cell sub-cellular dynamics. Curr. Opin. Cell Biol. 85, 102272 (2023).Article 

Google Scholar 
Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).Article 

Google Scholar 
Minsky, M. Memoir on inventing the confocal scanning microscope. Scanning 10, 128–138 (1988).Article 

Google Scholar 
Elliott, A. D. Confocal microscopy: principles and modern practices. Curr. Protoc. Cytom. 92, e68 (2020).Article 

Google Scholar 
Egger, M. D. & Petrăn, M. New reflected-light microscope for viewing unstained brain and ganglion cells. Science 157, 305–307 (1967).Article 
ADS 

Google Scholar 
Wells, N. P. et al. Time-resolved three-dimensional molecular tracking in live cells. Nano Lett. 10, 4732–4737 (2010).Article 
ADS 

Google Scholar 
Welsher, K. & Yang, H. Imaging the behavior of molecules in biological systems: breaking the 3D speed barrier with 3D multi-resolution microscopy. Faraday Discuss. 184, 359–379 (2015).Article 
ADS 

Google Scholar 
Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).Article 
ADS 

Google Scholar 
Schmidt, R. et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12, 1478 (2021).Article 
ADS 

Google Scholar 
Schütz, G. J., Axmann, M. & Schindler, H. Imaging single molecules in three dimensions. Single Mol. 2, 69–74 (2001).Article 
ADS 

Google Scholar 
Ram, S., Prabhat, P., Chao, J., Ward, E. S. & Ober, R. J. High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. Biophys. J. 95, 6025–6043 (2008).Article 
ADS 

Google Scholar 
von Diezmann, L., Shechtman, Y. & Moerner, W. E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem. Rev. 117, 7244–7275 (2017).Article 

Google Scholar 
Shechtman, Y., Weiss, L. E., Backer, A. S., Sahl, S. J. & Moerner, W. E. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions. Nano Lett. 15, 4194–4199 (2015).Article 
ADS 

Google Scholar 
Yamamoto, S. et al. A comparative study of EM-CCD and CMOS cameras for particle ion trajectory imaging. Appl. Radiat. Isot. 204, 111143 (2024).Article 

Google Scholar 
Brown, J. & Beer, S. Igniting questions, detecting answers: Hamamatsu Photonics introduces the world’s first photon-number-resolving scientific camera. in Quantum Technology: Driving Commercialisation of an Enabling Science III Vol. 8 (eds Bongs, K., Padgett, M. J., Fedrizzi, A. & Politi, A.) (SPIE, 2023).Huang, F. et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013).Article 

Google Scholar 
Rodriguez, E. A. et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42, 111–129 (2017).Article 

Google Scholar 
Lambert, T. J. FPbase: a community-editable fluorescent protein database. Nat. Methods 16, 277–278 (2019).Article 

Google Scholar 
Grimm, J. B. & Lavis, L. D. Caveat fluorophore: an insiders’ guide to small-molecule fluorescent labels. Nat. Methods 19, 149–158 (2022).Article 

Google Scholar 
Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).Article 

Google Scholar 
Kikuchi, K., Adair, L. D., Lin, J., New, E. J. & Kaur, A. Photochemical mechanisms of fluorophores employed in single-molecule localization microscopy. Angew. Chem. Int. Ed. 62, e202204745 (2023).Article 

Google Scholar 
Swoboda, M. et al. Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6, 6364–6369 (2012).Article 

Google Scholar 
Schwartz, S. L. et al. Fluorogen-activating proteins provide tunable labeling densities for tracking FcεRI independent of IgE. ACS Chem. Biol. 10, 539–546 (2015).Article 

Google Scholar 
Ryu, S. H. et al. Super-photostable organic dye for long-term live-cell single protein imaging. Preprint at https://doi.org/10.21203/rs.3.rs-3948627/v1 (2024).Zsok, J. et al. Nuclear basket proteins regulate the distribution and mobility of nuclear pore complexes in budding yeast. Preprint at https://doi.org/10.1101/2023.09.28.558499 (2023).Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).Article 

Google Scholar 
Ghosh, R. P. et al. A fluorogenic array for temporally unlimited single-molecule tracking. Nat. Chem. Biol. 15, 401–409 (2019).Article 

Google Scholar 
Naor, T. et al. Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking. iScience 25, 104197 (2022).Article 
ADS 

Google Scholar 
Thorn, K. Genetically encoded fluorescent tags. Mol. Biol. Cell 28, 848–857 (2017).Article 

Google Scholar 
Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).Article 

Google Scholar 
Hirano, M. et al. A highly photostable and bright green fluorescent protein. Nat. Biotechnol. 40, 1132–1142 (2022).Article 

Google Scholar 
Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).Article 

Google Scholar 
Li, H. & Vaughan, J. C. Switchable fluorophores for single-molecule localization microscopy. Chem. Rev. 118, 9412–9454 (2018).Article 

Google Scholar 
Zhang, M. et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat. Methods 9, 727–729 (2012).Article 

Google Scholar 
Bayle, V. et al. Single-particle tracking photoactivated localization microscopy of membrane proteins in living plant tissues. Nat. Protoc. 16, 1600–1628 (2021).Article 

Google Scholar 
Mishra, K. et al. Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nat. Biotechnol. 40, 598–605 (2022).Article 

Google Scholar 
Shelby, S. A., Castello-Serrano, I., Wisser, K. C., Levental, I. & Veatch, S. L. Membrane phase separation drives responsive assembly of receptor signaling domains. Nat. Chem. Biol. 19, 750–758 (2023).Article 

Google Scholar 
Hughes, T. E., Zhang, H., Logothetis, D. E. & Berlot, C. H. Visualization of a functional Galpha q-green fluorescent protein fusion in living cells. Association with the plasma membrane is disrupted by mutational activation and by elimination of palmitoylation sites, but not be activation mediated by receptors or AlF4−. J. Biol. Chem. 276, 4227–4235 (2001).Article 

Google Scholar 
Ouzounov, N. et al. MreB orientation correlates with cell diameter in Escherichia coli. Biophys. J. 111, 1035–1043 (2016).Article 
ADS 

Google Scholar 
Mealer, R., Butler, H. & Hughes, T. Functional fusion proteins by random transposon-based GFP insertion. Methods Cell Biol. 85, 23–44 (2008).Article 

Google Scholar 
Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).Article 
ADS 

Google Scholar 
Blair, K. M., Turner, L., Winkelman, J. T., Berg, H. C. & Kearns, D. B. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320, 1636–1638 (2008).Article 
ADS 

Google Scholar 
Ellison, C. K., Dalia, T. N., Dalia, A. B. & Brun, Y. V. Real-time microscopy and physical perturbation of bacterial pili using maleimide-conjugated molecules. Nat. Protoc. 14, 1803–1819 (2019).Article 

Google Scholar 
Wang, L., Xie, J. & Schultz, P. G. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006).Article 

Google Scholar 
Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).Article 

Google Scholar 
Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).Article 

Google Scholar 
Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).Article 

Google Scholar 
Hoelzel, C. A. & Zhang, X. Visualizing and manipulating biological processes by using HaloTag and SNAP-Tag technologies. ChemBioChem 21, 1935–1946 (2020).Article 

Google Scholar 
Zhao, C. et al. Single-cell multi-omics of human preimplantation embryos shows susceptibility to glucocorticoids. Genome Res. 32, 1627–1641 (2022).Article 

Google Scholar 
England, C. G., Luo, H. & Cai, W. HaloTag technology: a versatile platform for biomedical applications. Bioconjug. Chem. 26, 975–986 (2015).Article 

Google Scholar 
Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).Article 

Google Scholar 
Saurabh, S., Perez, A. M., Comerci, C. J., Shapiro, L. & Moerner, W. E. Super-resolution imaging of live bacteria cells using a genetically directed, highly photostable fluoromodule. J. Am. Chem. Soc. 138, 10398–10401 (2016).Article 

Google Scholar 
Kudalkar, E. M., Deng, Y., Davis, T. N. & Asbury, C. L. Coverslip cleaning and functionalization for total internal reflection fluorescence microscopy. Cold Spring Harb. Protoc. 2016, pdb.prot085548 (2016).Article 

Google Scholar 
Erdmann, R. S. et al. Labeling strategies matter for super-resolution microscopy: a comparison between HaloTags and SNAP-tags. Cell Chem. Biol. 26, 584–592.e6 (2019).Article 

Google Scholar 
Grimm, J. B. et al. Bright photoactivatable fluorophores for single-molecule imaging. Nat. Methods 13, 985–988 (2016).Article 

Google Scholar 
Ding, D.-Q. & Hiraoka, Y. Visualization of a specific genome locus by the lacO/LacI-GFP system. Cold Spring Harb. Protoc. 2017, pdb.prot091934 (2017).Article 

Google Scholar 
Zhang, B., Zerubia, J. & Olivo-Marin, J.-C. Gaussian approximations of fluorescence microscope point-spread function models. Appl. Opt. 46, 1819–1829 (2007).Article 
ADS 

Google Scholar 
Manzo, C. & Garcia-Parajo, M. F. A review of progress in single particle tracking: from methods to biophysical insights. Rep. Prog. Phys. 78, 124601 (2015).Article 
ADS 

Google Scholar 
Shen, H. et al. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117, 7331–7376 (2017).Article 

Google Scholar 
Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1, 39 (2021).Article 

Google Scholar 
Cheezum, M. K., Walker, W. F. & Guilford, W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81, 2378–2388 (2001).Article 

Google Scholar 
Lindén, M., Ćurić, V., Amselem, E. & Elf, J. Pointwise error estimates in localization microscopy. Nat. Commun. 8, 15115 (2017).Article 
ADS 

Google Scholar 
Rieger, B. & Stallinga, S. The lateral and axial localization uncertainty in super-resolution light microscopy. ChemPhysChem 15, 664–670 (2014).Article 

Google Scholar 
Smith, C. S., Joseph, N., Rieger, B. & Lidke, K. A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods 7, 373–375 (2010).Article 

Google Scholar 
Parthasarathy, R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat. Methods 9, 724–726 (2012).Article 

Google Scholar 
Martens, K. J. A., Bader, A. N., Baas, S., Rieger, B. & Hohlbein, J. Phasor based single-molecule localization microscopy in 3D (pSMLM-3D): an algorithm for MHz localization rates using standard CPUs. J. Chem. Phys. 148, 123311 (2018).Article 
ADS 

Google Scholar 
Aristov, A., Lelandais, B., Rensen, E. & Zimmer, C. ZOLA-3D allows flexible 3D localization microscopy over an adjustable axial range. Nat. Commun. 9, 2409 (2018).Article 
ADS 

Google Scholar 
Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281–289 (2014).Article 

Google Scholar 
Sbalzarini, I. F. & Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195 (2005).Article 

Google Scholar 
Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).Article 

Google Scholar 
Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).Article 
ADS 

Google Scholar 
Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).Article 

Google Scholar 
Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960).Article 
MathSciNet 

Google Scholar 
Reid, D. An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24, 843–854 (1979).Article 
ADS 

Google Scholar 
Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).Article 
ADS 

Google Scholar 
Magde, D., Elson, E. & Webb, W. W. Thermodynamic fluctuations in a reacting system — measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972).Article 
ADS 

Google Scholar 
Wiseman, P. W., Squier, J. A., Wilson, K. R. Dynamic image correlation spectroscopy (ICS) and two-color image cross-correlation spectroscopy (ICCS): concepts and application. SPIE, Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII 3919, 14–20 (2000).ADS 

Google Scholar 
Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).Article 
ADS 

Google Scholar 
Qian, H., Sheetz, M. P. & Elson, E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60, 910–921 (1991).Article 

Google Scholar 
Michalet, X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 041914 (2010).Article 
ADS 
MathSciNet 

Google Scholar 
Metzler, R., Jeon, J.-H., Cherstvy, A. G. & Barkai, E. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164 (2014).Article 

Google Scholar 
Metelev, M. et al. Direct measurements of mRNA translation kinetics in living cells. Nat. Commun. 13, 1852 (2022).Article 
ADS 

Google Scholar 
Hansen, A. S. et al. Robust model-based analysis of single-particle tracking experiments with Spot-On. eLife 7, e33125 (2018).Article 

Google Scholar 
Oviedo-Bocanegra, L. M., Hinrichs, R., Rotter, D. A. O., Dersch, S. & Graumann, P. L. Single molecule/particle tracking analysis program SMTracker 2.0 reveals different dynamics of proteins within the RNA degradosome complex in Bacillus subtilis. Nucleic Acids Res. 49, e112 (2021).Article 

Google Scholar 
Schütz, G. J., Schindler, H. & Schmidt, T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73, 1073–1080 (1997).Article 

Google Scholar 
van den Wildenberg, S. M. J. L., Bollen, Y. J. M. & Peterman, E. J. G. How to quantify protein diffusion in the bacterial membrane. Biopolymers 95, 312–321 (2011).Article 

Google Scholar 
Gebhardt, J. C. M. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10, 421–426 (2013).Article 

Google Scholar 
Martens, K. J. A., Turkowyd, B., Hohlbein, J. & Endesfelder, U. Temporal analysis of relative distances (TARDIS) is a robust, parameter-free alternative to single-particle tracking. Nat. Methods 21, 1074–1081 (2024).Article 

Google Scholar 
Vink, J. N. A., Brouns, S. J. J. & Hohlbein, J. Extracting transition rates in particle tracking using analytical diffusion distribution analysis. Biophys. J. 119, 1970–1983 (2020).Article 
ADS 

Google Scholar 
Bosch, P. J., Kanger, J. S. & Subramaniam, V. Classification of dynamical diffusion states in single molecule tracking microscopy. Biophys. J. 107, 588–598 (2014).Article 
ADS 

Google Scholar 
Elliott, L. C. C., Barhoum, M., Harris, J. M. & Bohn, P. W. Trajectory analysis of single molecules exhibiting non-Brownian motion. Phys. Chem. Chem. Phys. 13, 4326–4334 (2011).Article 

Google Scholar 
Neyman, J., Pearson, E. S. & Pearson, K. I. X. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. A 231, 289–337 (1997).ADS 

Google Scholar 
Briane, V. et al. A sequential algorithm to detect diffusion switching along intracellular particle trajectories. Bioinformatics 36, 317–329 (2020).Article 

Google Scholar 
Montiel, D., Cang, H. & Yang, H. Quantitative characterization of changes in dynamical behavior for single-particle tracking studies. J. Phys. Chem. B 110, 19763–19770 (2006).Article 

Google Scholar 
Yin, S., Song, N. & Yang, H. Detection of velocity and diffusion coefficient change points in single-particle trajectories. Biophys. J. 115, 217–229 (2018).Article 
ADS 

Google Scholar 
Pishro-Nik, H. Introduction to Probability, Statistics, and Random Processes (Kappa Research, LLC, 2014).Fosler-Lussier, E. Markov Models and Hidden Markov Models: A Brief Tutorial (International Computer Science Institute, 1998).Das, R., Cairo, C. W. & Coombs, D. A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS Comput. Biol. 5, e1000556 (2009).Article 
ADS 
MathSciNet 

Google Scholar 
Persson, F., Lindén, M., Unoson, C. & Elf, J. Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10, 265–269 (2013).Article 

Google Scholar 
Ober, R. J., Ram, S. & Ward, E. S. Localization accuracy in single-molecule microscopy. Biophys. J. 86, 1185–1200 (2004).Article 
ADS 

Google Scholar 
Fisher, R. A. On the mathematical foundations of theoretical statistics. Phil. Trans. R. Soc. Lond. A 222, 309–368 (1922).Article 
ADS 

Google Scholar 
Cox, D. R. The Theory of Stochastic Processes (Methuen, 1965).Ott, M., Shai, Y. & Haran, G. Single-particle tracking reveals switching of the HIV fusion peptide between two diffusive modes in membranes. J. Phys. Chem. B 117, 13308–13321 (2013).Article 

Google Scholar 
Karslake, J. D. et al. SMAUG: analyzing single-molecule tracks with nonparametric Bayesian statistics. Methods 193, 16–26 (2021).Article 

Google Scholar 
Wolf, A., Volz-Rakebrand, P., Balke, J. & Alexiev, U. Diffusion analysis of NAnoscopic ensembles: a tracking-free diffusivity analysis for NAnoscopic ensembles in biological samples and nanotechnology. Small 19, e2206722 (2023).Article 

Google Scholar 
Slator, P. J., Cairo, C. W. & Burroughs, N. J. Detection of diffusion heterogeneity in single particle tracking trajectories using a hidden Markov model with measurement noise propagation. PLoS ONE 10, e0140759 (2015).Article 

Google Scholar 
Bernstein, J. & Fricks, J. Analysis of single particle diffusion with transient binding using particle filtering. J. Theor. Biol. 401, 109–121 (2016).Article 
ADS 

Google Scholar 
Relich, P. K., Olah, M. J., Cutler, P. J. & Lidke, K. A. Estimation of the diffusion constant from intermittent trajectories with variable position uncertainties. Phys. Rev. E 93, 042401 (2016).Article 
ADS 

Google Scholar 
Lindén, M. & Elf, J. Variational algorithms for analyzing noisy multistate diffusion trajectories. Biophys. J. 115, 276–282 (2018).Article 
ADS 

Google Scholar 
Forney, G. D. The Viterbi algorithm. Proc. IEEE 61, 268–278 (1973).Article 
MathSciNet 

Google Scholar 
Grimmer, J. An introduction to Bayesian inference via variational approximations. Political Anal. 19, 32–47 (2011).Article 

Google Scholar 
Calderon, C. P. Data-driven techniques for detecting dynamical state changes in noisily measured 3D single-molecule trajectories. Molecules 19, 18381–18398 (2014).Article 

Google Scholar 
Chen, Z., Geffroy, L. & Biteen, J. S. NOBIAS: analyzing anomalous diffusion in single-molecule tracks with nonparametric Bayesian inference. Front. Bioinform. 1, 742073 (2021).Article 

Google Scholar 
Falcao, R. C. & Coombs, D. Diffusion analysis of single particle trajectories in a Bayesian nonparametrics framework. Phys. Biol. 17, 025001 (2020).Article 

Google Scholar 
Smith, C. S. et al. An automated Bayesian pipeline for rapid analysis of single-molecule binding data. Nat. Commun. 10, 272 (2019).Article 
ADS 

Google Scholar 
James, G., Witten, D., Hastie, T., Tibshirani, R. & Taylor, J. E. An Introduction to Statistical Learning: With Applications in Python (Springer, 2023).Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).Article 
ADS 
MathSciNet 

Google Scholar 
Neath, A. A. & Cavanaugh, J. E. The Bayesian information criterion: background, derivation, and applications. WIREs Comput. Stat. 4, 199–203 (2012).Article 

Google Scholar 
Simon, F. et al. Detecting directed motion and confinement in single-particle trajectories using hidden variables. eLife 13, RP99347 (2024).
Google Scholar 
Heckert, A., Dahal, L., Tjian, R. & Darzacq, X. Recovering mixtures of fast-diffusing states from short single-particle trajectories. eLife 11, e70169 (2022).Article 

Google Scholar 
Prindle, J. R., Wang, Y., Rocha, J. M., Diepold, A. & Gahlmann, A. Distinct cytosolic complexes containing the type III secretion system ATPase resolved by three-dimensional single-molecule tracking in live Yersinia enterocolitica. Microbiol. Spectr. 10, e0174422 (2022).Article 

Google Scholar 
Woringer, M., Izeddin, I., Favard, C. & Berry, H. Anomalous subdiffusion in living cells: bridging the gap between experiments and realistic models through collaborative challenges. Front. Phys. 8, 134 (2020).Article 

Google Scholar 
Mandelbrot, B. B. & Van Ness, J. W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968).Article 
ADS 
MathSciNet 

Google Scholar 
Muñoz-Gil, G. et al. Objective comparison of methods to decode anomalous diffusion. Nat. Commun. 12, 6253 (2021).Article 
ADS 

Google Scholar 
Klafter, J. & Zumofen, G. Lévy statistics in a Hamiltonian system. Phys. Rev. E 49, 4873–4877 (1994).Article 
ADS 

Google Scholar 
Niehaus, A. M. S., Vlachos, D. G., Edwards, J. S., Plechac, P. & Tribe, R. Microscopic simulation of membrane molecule diffusion on corralled membrane surfaces. Biophys. J. 94, 1551–1564 (2008).Article 
ADS 

Google Scholar 
Kusumi, A. & Sako, Y. Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 8, 566–574 (1996).Article 

Google Scholar 
Meilhac, N., Le Guyader, L., Salomé, L. & Destainville, N. Detection of confinement and jumps in single-molecule membrane trajectories. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73, 011915 (2006).Article 

Google Scholar 
Simson, R., Sheets, E. D. & Jacobson, K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989–993 (1995).Article 
ADS 

Google Scholar 
Weigel, A. V., Simon, B., Tamkun, M. M. & Krapf, D. Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Natl Acad. Sci. USA 108, 6438–6443 (2011).Article 
ADS 

Google Scholar 
Golding, I. & Cox, E. C. Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006).Article 
ADS 

Google Scholar 
Lampo, T. J., Stylianidou, S., Backlund, M. P., Wiggins, P. A. & Spakowitz, A. J. Cytoplasmic RNA–protein particles exhibit non-Gaussian subdiffusive behavior. Biophys. J. 112, 532–542 (2017).Article 
ADS 

Google Scholar 
Guigas, G., Kalla, C. & Weiss, M. Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys. J. 93, 316–323 (2007).Article 
ADS 

Google Scholar 
Lizana, L., Ambjörnsson, T., Taloni, A., Barkai, E. & Lomholt, M. A. Foundation of fractional Langevin equation: harmonization of a many-body problem. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 051118 (2010).Article 
ADS 

Google Scholar 
Burnecki, K. et al. Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion. Biophys. J. 103, 1839–1847 (2012).Article 
ADS 

Google Scholar 
Weber, S. C., Spakowitz, A. J. & Theriot, J. A. Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys. Rev. Lett. 104, 238102 (2010).Article 
ADS 

Google Scholar 
Bressloff, P. C. & Newby, J. M. Stochastic models of intracellular transport. Rev. Mod. Phys. 85, 135–196 (2013).Article 
ADS 

Google Scholar 
Massignan, P. et al. Nonergodic subdiffusion from Brownian motion in an inhomogeneous medium. Phys. Rev. Lett. 112, 150603 (2014).Article 
ADS 

Google Scholar 
Sher, H. & Montroll, E. W. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12, 2455–2477 (1975).Article 
ADS 

Google Scholar 
Krapf, D. Mechanisms underlying anomalous diffusion in the plasma membrane. Curr. Top. Membr. 75, 167–207 (2015).Article 

Google Scholar 
Kepten, E., Weron, A., Sikora, G., Burnecki, K. & Garini, Y. Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments. PLoS ONE 10, e0117722 (2015).Article 

Google Scholar 
Rehfeldt, F. & Weiss, M. The random walker’s toolbox for analyzing single-particle tracking data. Soft Matter 19, 5206–5222 (2023).Article 
ADS 

Google Scholar 
Meroz, Y. & Sokolov, I. M. A toolbox for determining subdiffusive mechanisms. Phys. Rep. 573, 1–29 (2015).Article 
ADS 
MathSciNet 

Google Scholar 
Magdziarz, M., Weron, A., Burnecki, K. & Klafter, J. Fractional Brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics. Phys. Rev. Lett. 103, 180602 (2009).Article 
ADS 

Google Scholar 
Türkcan, S., Alexandrou, A. & Masson, J.-B. A Bayesian inference scheme to extract diffusivity and potential fields from confined single-molecule trajectories. Biophys. J. 102, 2288–2298 (2012).Article 
ADS 

Google Scholar 
Briane, V., Kervrann, C. & Vimond, M. Statistical analysis of particle trajectories in living cells. Phys. Rev. E 97, 062121 (2018).Article 
ADS 

Google Scholar 
Sikora, G., Burnecki, K. & Wyłomańska, A. Mean-squared-displacement statistical test for fractional Brownian motion. Phys. Rev. E 95, 032110 (2017).Article 
ADS 

Google Scholar 
Granik, N. et al. Single-particle diffusion characterization by deep learning. Biophys. J. 117, 185–192 (2019).Article 
ADS 

Google Scholar 
Gentili, A. & Volpe, G. Characterization of anomalous diffusion classical statistics powered by deep learning (CONDOR). J. Phys. A Math. Theor. 54, 314003 (2021).Article 
ADS 
MathSciNet 

Google Scholar 
Li, D., Yao, Q. & Huang, Z. WaveNet-based deep neural networks for the characterization of anomalous diffusion (WADNet). J. Phys. A Math. Theor. 54, 404003 (2021).Article 
MathSciNet 

Google Scholar 
Argun, A., Volpe, G. & Bo, S. Classification, inference and segmentation of anomalous diffusion with recurrent neural networks. J. Phys. A Math. Theor. 54, 294003 (2021).Article 
MathSciNet 

Google Scholar 
Seckler, H. & Metzler, R. Bayesian deep learning for error estimation in the analysis of anomalous diffusion. Nat. Commun. 13, 6717 (2022).Article 
ADS 

Google Scholar 
Keren, K., Yam, P. T., Kinkhabwala, A., Mogilner, A. & Theriot, J. A. Intracellular fluid flow in rapidly moving cells. Nat. Cell Biol. 11, 1219–1224 (2009).Article 

Google Scholar 
Pilling, A. D., Horiuchi, D., Lively, C. M. & Saxton, W. M. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell 17, 2057–2068 (2006).Article 

Google Scholar 
Arcizet, D., Meier, B., Sackmann, E., Rädler, J. O. & Heinrich, D. Temporal analysis of active and passive transport in living cells. Phys. Rev. Lett. 101, 248103 (2008).Article 
ADS 

Google Scholar 
Zhou, Q. et al. Three-dimensional wide-field fluorescence microscopy for transcranial mapping of cortical microcirculation. Nat. Commun. 13, 7969 (2022).Article 
ADS 

Google Scholar 
Bouzigues, C. & Dahan, M. Transient directed motions of GABA(A) receptors in growth cones detected by a speed correlation index. Biophys. J. 92, 654–660 (2007).Article 
ADS 

Google Scholar 
Weber, S. C., Thompson, M. A., Moerner, W. E., Spakowitz, A. J. & Theriot, J. A. Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. Biophys. J. 102, 2443–2450 (2012).Article 
ADS 

Google Scholar 
Reck-Peterson, S. L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006).Article 

Google Scholar 
Fenn, J. D., Johnson, C. M., Peng, J., Jung, P. & Brown, A. Kymograph analysis with high temporal resolution reveals new features of neurofilament transport kinetics. Cytoskeleton 75, 22–41 (2018).Article 

Google Scholar 
Daniele, J. R., Baqri, R. M. & Kunes, S. Analysis of axonal trafficking via a novel live-imaging technique reveals distinct hedgehog transport kinetics. Biol. Open 6, 714–721 (2017).
Google Scholar 
Ott, C. & Lippincott-Schwartz, J. Visualization of live primary cilia dynamics using fluorescence microscopy. Curr. Protoc. Cell Biol. 4, 4.26.1–4.26.22 (2012).
Google Scholar 
Weiss, L. E., Milenkovic, L., Yoon, J., Stearns, T. & Moerner, W. E. Motional dynamics of single Patched1 molecules in cilia are controlled by Hedgehog and cholesterol. Proc. Natl Acad. Sci. USA 116, 5550–5557 (2019).Article 
ADS 

Google Scholar 
Vega, A. R., Freeman, S. A., Grinstein, S. & Jaqaman, K. Multistep track segmentation and motion classification for transient mobility analysis. Biophys. J. 114, 1018–1025 (2018).Article 
ADS 

Google Scholar 
Bai, S., Kolter, J. Z. & Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. Preprint at http://arxiv.org/abs/1803.01271 (2018).Qu, X. et al. Semantic segmentation of anomalous diffusion using deep convolutional networks. Phys. Rev. Res. 6, 013054 (2024).Article 

Google Scholar 
Bo, S., Schmidt, F., Eichhorn, R. & Volpe, G. Measurement of anomalous diffusion using recurrent neural networks. Phys. Rev. E 100, 010102 (2019).Article 
ADS 

Google Scholar 
Garibo-i-Orts, Ò., Baeza-Bosca, A., Garcia-March, M. A. & Conejero, J. A. Efficient recurrent neural network methods for anomalously diffusing single particle short and noisy trajectories. J. Phys. A Math. Theor. 54, 504002 (2021).Article 
MathSciNet 

Google Scholar 
Arts, M., Smal, I., Paul, M. W., Wyman, C. & Meijering, E. Particle mobility analysis using deep learning and the moment scaling spectrum. Sci. Rep. 9, 17160 (2019).Article 
ADS 

Google Scholar 
Firbas, N., Garibo-i-Orts, Ò., Garcia-March, M. Á. & Conejero, J. A. Characterization of anomalous diffusion through convolutional transformers. J. Phys. A Math. Theor. 56, 014001 (2023).Article 
ADS 
MathSciNet 

Google Scholar 
Requena, B. et al. Inferring pointwise diffusion properties of single trajectories with deep learning. Biophys. J. 122, 4360–4369 (2023).Article 
ADS 

Google Scholar 
El Beheiry, M., Dahan, M. & Masson, J.-B. InferenceMAP: mapping of single-molecule dynamics with Bayesian inference. Nat. Methods 12, 594–595 (2015).Article 

Google Scholar 
Giannone, G. et al. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J. 99, 1303–1310 (2010).Article 
ADS 

Google Scholar 
Sanamrad, A. et al. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. Proc. Natl Acad. Sci. USA 111, 11413–11418 (2014).Article 
ADS 

Google Scholar 
Zhong, Y. & Wang, G. Three-dimensional single particle tracking and its applications in confined environments. Annu. Rev. Anal. Chem. 13, 381–403 (2020).Article 

Google Scholar 
Weber, S. C., Spakowitz, A. J. & Theriot, J. A. Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc. Natl Acad. Sci. USA 109, 7338–7343 (2012).Article 
ADS 

Google Scholar 
Javer, A. et al. Persistent super-diffusive motion of Escherichia coli chromosomal loci. Nat. Commun. 5, 3854 (2014).Article 
ADS 

Google Scholar 
Hajjoul, H. et al. High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res. 23, 1829–1838 (2013).Article 

Google Scholar 
Śmigiel, W. M. et al. Protein diffusion in Escherichia coli cytoplasm scales with the mass of the complexes and is location dependent. Sci. Adv. 8, eabo5387 (2022).Article 

Google Scholar 
Parry, B. R. et al. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156, 183–194 (2014).Article 

Google Scholar 
Bakshi, S., Siryaporn, A., Goulian, M. & Weisshaar, J. C. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85, 21–38 (2012).Article 

Google Scholar 
Huang, W. Y. C., Cheng, X. & Ferrell, J. E. Cytoplasmic organization promotes protein diffusion in Xenopus extracts. Nat. Commun. 13, 5599 (2022).Article 
ADS 

Google Scholar 
Clausen, M. P., Arnspang, E. C., Ballou, B., Bear, J. E. & Lagerholm, B. C. Simultaneous multi-species tracking in live cells with quantum dot conjugates. PLoS ONE 9, e97671 (2014).Article 
ADS 

Google Scholar 
Joyner, R. P. et al. A glucose-starvation response regulates the diffusion of macromolecules. eLife 5, e09376 (2016).
Google Scholar 
Konopka, M. C., Shkel, I. A., Cayley, S., Record, M. T. & Weisshaar, J. C. Crowding and confinement effects on protein diffusion in vivo. J. Bacteriol. 188, 6115–6123 (2006).Article 

Google Scholar 
Alric, B., Formosa-Dague, C., Dague, E., Holt, L. J. & Delarue, M. Macromolecular crowding limits growth under pressure. Nat. Phys. 18, 411–416 (2022).Article 

Google Scholar 
Guo, M. et al. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158, 822–832 (2014).Article 

Google Scholar 
Garner, R. M., Molines, A. T., Theriot, J. A. & Chang, F. Vast heterogeneity in cytoplasmic diffusion rates revealed by nanorheology and Doppelgänger simulations. Biophys. J. 122, 767–783 (2023).Article 
ADS 

Google Scholar 
Ladouceur, A.-M. et al. Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid–liquid phase separation. Proc. Natl Acad. Sci. USA 117, 18540–18549 (2020).Article 
ADS 

Google Scholar 
Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. & Jacobson, K. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284 (2002).Article 

Google Scholar 
Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).Article 

Google Scholar 
Jin, S., Haggie, P. M. & Verkman, A. S. Single-particle tracking of membrane protein diffusion in a potential: simulation, detection, and application to confined diffusion of CFTR Cl− channels. Biophys. J. 93, 1079–1088 (2007).Article 
ADS 

Google Scholar 
Sungkaworn, T. et al. Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 550, 543–547 (2017).Article 
ADS 

Google Scholar 
Rassam, P. et al. Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. Nature 523, 333–336 (2015).Article 
ADS 

Google Scholar 
Prindle, J. R., de Cuba, O. I. C. & Gahlmann, A. Single-molecule tracking to determine the abundances and stoichiometries of freely-diffusing protein complexes in living cells: past applications and future prospects. J. Chem. Phys. 159, 071002 (2023).Article 
ADS 

Google Scholar 
English, B. P. et al. Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc. Natl Acad. Sci. USA 108, E365–E373 (2011).Article 

Google Scholar 
Volkov, I. L. et al. tRNA tracking for direct measurements of protein synthesis kinetics in live cells. Nat. Chem. Biol. 14, 618–626 (2018).Article 

Google Scholar 
Mazza, D., Abernathy, A., Golob, N., Morisaki, T. & McNally, J. G. A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40, e119 (2012).Article 

Google Scholar 
Liao, Y., Schroeder, J. W., Gao, B., Simmons, L. A. & Biteen, J. S. Single-molecule motions and interactions in live cells reveal target search dynamics in mismatch repair. Proc. Natl Acad. Sci. USA 112, E6898–E6906 (2015).Article 
ADS 

Google Scholar 
Weng, X. & Xiao, J. Spatial organization of transcription in bacterial cells. Trends Genet. 30, 287–297 (2014).Article 

Google Scholar 
Miné-Hattab, J., Recamier, V., Izeddin, I., Rothstein, R. & Darzacq, X. Multi-scale tracking reveals scale-dependent chromatin dynamics after DNA damage. Mol. Biol. Cell 28, 3323–3332 (2017).Article 

Google Scholar 
Whitley, K. D. et al. FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in Bacillus subtilis cell division. Nat. Commun. 12, 2448 (2021).Article 
ADS 

Google Scholar 
Tang, X. et al. Kinetic principles underlying pioneer function of GAGA transcription factor in live cells. Nat. Struct. Mol. Biol. 29, 665–676 (2022).Article 

Google Scholar 
Oomen, M. E., Hansen, A. S., Liu, Y., Darzacq, X. & Dekker, J. CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning. Genome Res. 29, 236–249 (2019).Article 

Google Scholar 
Vink, J. N. A. et al. Direct visualization of native CRISPR target search in live bacteria reveals cascade DNA surveillance mechanism. Mol. Cell 77, 39–50.e10 (2020).Article 

Google Scholar 
Martens, K. J. A. et al. Visualisation of dCas9 target search in vivo using an open-microscopy framework. Nat. Commun. 10, 3552 (2019).Article 
ADS 

Google Scholar 
Biswas, S. et al. HP1 oligomerization compensates for low-affinity H3K9me recognition and provides a tunable mechanism for heterochromatin-specific localization. Sci. Adv. 8, eabk0793 (2022).Article 

Google Scholar 
Peng, C. S. et al. Nanometer-resolution tracking of single cargos reveals dynein motor mechanisms. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01694-2 (2024).Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).Article 
ADS 

Google Scholar 
Montero Llopis, P. et al. Best practices and tools for reporting reproducible fluorescence microscopy methods. Nat. Methods 18, 1463–1476 (2021).Article 

Google Scholar 
Foster, E. D. & Deardorff, A. Open science framework (OSF). J. Med. Lib. Assoc. 105, 203–206 (2017).
Google Scholar 
Paszke, A. et al. Automatic differentiation in PyTorch. in 31st Conference on Neural Information Processing Systems (NIPS, 2017).Dillon, J. V. et al. TensorFlow distributions. Preprint at https://doi.org/10.48550/arXiv.1711.10604 (2017).Chollet, F. et al. Keras. GitHub https://github.com/fchollet/keras (2015).Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 

Google Scholar 
Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).Article 
MathSciNet 

Google Scholar 
Chiu, C.-L., Clack, N. & The napari Community. napari: a Python multi-dimensional image viewer platform for the research community. Microsc. Microanal. 28, 1576–1577 (2022).Article 

Google Scholar 
Berglund, A. J. Statistics of camera-based single-particle tracking. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 011917 (2010).Article 
ADS 

Google Scholar 
Lindén, M., Ćurić, V., Boucharin, A., Fange, D. & Elf, J. Simulated single molecule microscopy with SMeagol. Bioinformatics 32, 2394–2395 (2016).Article 

Google Scholar 
Ye, N., Roosta-Khorasani, F. & Cui, T. Optimization methods for inverse problems. in 2017 MATRIX Annals (eds de Gier, J., Praeger, C. E. & Tao, T.) 121–140 (Springer International Publishing, 2019).Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).Article 
ADS 

Google Scholar 
Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python JIT compiler. In Proc. Second Workshop on the LLVM Compiler Infrastructure in HPC 1–6 (ACM, 2015).Hogg, R. V., McKean, J. W. & Craig, A. T. Introduction to Mathematical Statistics (Pearson Prentice Hall, 2005).Pollard, T. D. A guide to simple and informative binding assays. Mol. Biol. Cell 21, 4061–4067 (2010).Article 

Google Scholar 
Lu, H. P. Probing single-molecule protein conformational dynamics. Acc. Chem. Res. 38, 557–565 (2005).Article 

Google Scholar 
Russell, M. & Moore, R. Explicit modelling of state occupancy in hidden Markov models for automatic speech recognition. In ICASSP ’85. IEEE Int. Conf. Acoustics, Speech, and Signal Processing 5–8 (IEEE, 1985).Levinson, S. E. Continuously variable duration hidden Markov models for automatic speech recognition. Comput. Speech Lang. 1, 29–45 (1986).Article 

Google Scholar 
Xie, Y., Tang, S., Tang, C. & Huang, X. An efficient algorithm for parameterizing HsMM with Gaussian and gamma distributions. Inf. Process. Lett. 112, 732–737 (2012).Article 
MathSciNet 

Google Scholar 
Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).Article 
ADS 
MathSciNet 

Google Scholar 
Cuomo, S. et al. Scientific machine learning through physics-informed neural networks: where we are and what’s next. J. Sci. Comput. 92, 88 (2022).Article 
MathSciNet 

Google Scholar 
Hasani, R. et al. Closed-form continuous-time neural networks. Nat. Mach. Intell. 4, 992–1003 (2022).Article 

Google Scholar 
Chahine, M. et al. Robust flight navigation out of distribution with liquid neural networks. Sci. Robot. 8, eadc8892 (2023).Article 

Google Scholar 
Masegosa, A. R., Cabañas, R., Langseth, H., Nielsen, T. D. & Salmerón, A. Probabilistic models with deep neural networks. Entropy 23, 117 (2021).Article 
ADS 
MathSciNet 

Google Scholar 
Huang, T. et al. Simultaneous multicolor single-molecule tracking with single-laser excitation via spectral imaging. Biophys. J. 114, 301–310 (2018).Article 
ADS 

Google Scholar 
Butler, C. et al. Multi-dimensional spectral single molecule localization microscopy. Front. Bioinform. 2, 813494 (2022).Article 

Google Scholar 
Chen, P. et al. Fluorescence lifetime tracking and imaging of single moving particles assisted by a low-photon-count analysis algorithm. Biomed. Opt. Expr. 14, 1718–1731 (2023).Article 

Google Scholar 
Thiele, J. C. et al. Confocal fluorescence-lifetime single-molecule localization microscopy. ACS Nano 14, 14190–14200 (2020).Article 

Google Scholar 
Chen, D., Li, H., Yu, B. & Qu, J. Four-dimensional multi-particle tracking in living cells based on lifetime imaging. Nanophotonics 11, 1537–1547 (2022).Article 

Google Scholar 
Mehta, S. B. et al. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc. Natl Acad. Sci. USA 113, E6352–E6361 (2016).Article 

Google Scholar 
Keller, A. M. et al. Multicolor three-dimensional tracking for single-molecule fluorescence resonance energy transfer measurements. Anal. Chem. 90, 6109–6115 (2018).Article 

Google Scholar 
Cole, F. et al. Super-resolved FRET and co-tracking in pMINFLUX. Nat. Photon. 18, 478–484 (2024).Article 
ADS 

Google Scholar 
Savin, T. & Doyle, P. S. Static and dynamic errors in particle tracking microrheology. Biophys. J. 88, 623–638 (2005).Article 
ADS 

Google Scholar 
Türkcan, S. & Masson, J.-B. Bayesian decision tree for the classification of the mode of motion in single-molecule trajectories. PLoS ONE 8, e82799 (2013).Article 
ADS 

Google Scholar 
Di Rienzo, C., Gratton, E., Beltram, F. & Cardarelli, F. Spatiotemporal fluctuation analysis: a powerful tool for the future nanoscopy of molecular processes. Biophys. J. 111, 679–685 (2016).Article 

Google Scholar 
Seckler, H., Szwabiński, J. & Metzler, R. Machine-learning solutions for the analysis of single-particle diffusion trajectories. J. Phys. Chem. Lett. 14, 7910–7923 (2023).Article 

Google Scholar 

Hot Topics

Related Articles