From lignin self assembly to nanoparticles nucleation and growth: A critical perspective

Argyropoulos, D. S. & Crestini, C. A perspective on lignin refining, functionalization, and utilization. ACS Sustain. Chem. Eng 4, 5089–5089 (2016).Article 
CAS 

Google Scholar 
Gigli, M. & Crestini, C. Fractionation of industrial lignins: opportunities and challenges. Green Chem 22, 4722–4746 (2020).Article 
CAS 

Google Scholar 
Pajer, N., Gigli, M. & Crestini, C. The Laccase catalysed tandem lignin depolymerisation/polymerisation. ChemSusChem n/a, e202301646.Sarkanen, K. V. Wood Lignins. In The chemistry of wood 250–311 (Interscience Publishers, New York, 1963).Ede, R. M., Ralph, J., Torr, K. M. & Watson, B. A 2D NMR Investigation of the heterogeneity of diarylpropane structures in extracted Pinus radiata lignins. 50, 161–164 (1996).Brunow, G. & Lundquist, K. Functional Groups and Bonding Patterns in Lignin (Including the Lignin-Carbohydrate Complexes). In Lignin and Lignans. Advances in Chemistry 267–300 (CRC Press, Boca Raton, 2010).Creighton, R. H. J. & Hibbert, H. Studies on lignin and related compounds. LXXVI. Alkaline Nitrobenzene oxidation of corn stalks. Isolation of p-Hydroxybenzaldehyde. J. Am. Chem. Soc. 66, 37–38 (1944).Article 
CAS 

Google Scholar 
Creighton, R. H. J., Gibbs, R. D. & Hibbert, H. Studies on lignin and related compounds. LXXV. Alkaline nitrobenzene oxidation of plant materials and application to taxonomic classification1. J. Am. Chem. Soc. 66, 32–37 (1944).Article 
CAS 

Google Scholar 
Higuchi, T., Ito, Y., Shimada, M. & Kawamura, I. Chemical properties of milled wood lignin of grasses. Phytochemistry 6, 1551–1556 (1967).Article 
CAS 

Google Scholar 
Freudenberg, K. Biogenesis and constitution of lignin. Pure Appl. Chem. 5, 9–20 (1962).Article 
CAS 

Google Scholar 
Crestini, C., Melone, F., Sette, M. & Saladino, R. Milled wood lignin: a linear oligomer. Biomacromolecules 12, 3928–3935 (2011).Article 
CAS 
PubMed 

Google Scholar 
Crestini, C., Lange, H., Sette, M. & Argyropoulos, D. S. On the structure of softwood kraft lignin. Green Chem 19, 4104–4121 (2017).Article 
CAS 

Google Scholar 
Guerra, A. et al. Toward a better understanding of the lignin isolation process from wood. J. Agric. Food Chem. 54, 5939–5947 (2006).Article 
CAS 
PubMed 

Google Scholar 
Guerra, A., Filpponen, I., Lucia, L. A. & Argyropoulos, D. S. Comparative evaluation of three lignin isolation protocols for various wood species. J. Agric. Food Chem. 54, 9696–9705 (2006).Article 
CAS 
PubMed 

Google Scholar 
Granata, A. & Argyropoulos, D. S. 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J. Agric. Food Chem. 43, 1538–1544 (1995).Article 
CAS 

Google Scholar 
Meng, X. et al. Determination of hydroxyl groups in biorefinery resources via quantitative 31 P NMR spectroscopy. Nat. Protoc. 14, 2627–2647 (2019).Article 
CAS 
PubMed 

Google Scholar 
Argyropoulos, D. S., Pajer, N. & Crestini, C. Quantitative 31P NMR Analysis of Lignins and Tannins. J. Vis. Exp. 62696. https://doi.org/10.3791/62696 (2021)Ragnar, M., Lindgren, C. T. & Nilvebrant, N.-O. pKa-values of Guaiacyl and Syringyl phenols related to lignin. J. Wood Chem. Technol. 20, 277–305 (2000).Article 
CAS 

Google Scholar 
Österberg, M., Henn, K. A., Farooq, M. & Valle-Delgado, J. J. Biobased nanomaterials─the role of interfacial interactions for advanced materials. Chem. Rev. 123, 2200–2241 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Lievonen, M. et al. A simple process for lignin nanoparticle preparation. Green Chem 18, 1416–1422 (2016).Article 
CAS 

Google Scholar 
Zongo, L., Lange, H. & Crestini, C. A study of the effect of Kosmotropic and Chaotropic ions on the release characteristics of lignin microcapsules under stimuli-responsive conditions. ACS Omega 4, 6979–6993 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vermaas, J. V., Crowley, M. F. & Beckham, G. T. Molecular lignin solubility and structure in organic solvents. ACS Sustain. Chem. Eng. 8, 17839–17850 (2020).Article 
CAS 

Google Scholar 
Zhao, W., Simmons, B., Singh, S., Ragauskas, A. & Cheng, G. From lignin association to nano-/micro-particle preparation: extracting higher value of lignin. Green Chem 18, 5693–5700 (2016).Article 
CAS 

Google Scholar 
Gigli, M., Cailotto, S. & Crestini, C. 9 New perspectives in lignin valorization: Lignin-derived nanostructures. In Biorefinery: From Biomass to Chemicals and Fuels 265–320 (De Gruyter, 2021).Beisl, S., Friedl, A. & Miltner, A. Lignin from micro- to nanosize: applications. Int. J. Mol. Sci. 18, 2367 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Sipponen, M. H., Lange, H., Crestini, C., Henn, A. & Österberg, M. Lignin for nano- and microscaled carrier systems: applications, trends, and challenges. ChemSusChem 12, 2039–2054 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boarino, A. & Klok, H.-A. Opportunities and challenges for lignin valorization in food packaging, antimicrobial, and agricultural applications. Biomacromolecules 24, 1065–1077 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yearla, S. R. & Padmasree, K. Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants J. Exp. Nanosci. 11, 289–302 (2016).Article 
CAS 

Google Scholar 
Sadeghifar, H. & Ragauskas, A. Lignin as a UV light blocker—a Review. Polymers 12, 1134 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lu, F. & Ralph, J. The DFRC method for lignin analysis. 2. Monomers from isolated lignins. J. Agric. Food Chem. 46, 547–552 (1998).Article 
CAS 
PubMed 

Google Scholar 
Adler, E., Pepper, J. M. & Eriksoo, E. Action of mineral acid on lignin and model substances of Guaiacylglycerol-β-aryl Ether Type. Ind. Eng. Chem. 49, 1391–1392 (1957).Article 
CAS 

Google Scholar 
Rolando, C., Monties, B. & Lapierre, C. Thioacidolysis. In Methods in Lignin Chemistry (eds. Lin, S. Y. & Dence, C. W.) 334–349 (Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-74065-7_23. 1992).Erich, A. & Lundquist, K. Spectrochemical determination of phenylcoumaran elments in lignin. Acta Chem. Scand. 17, 13–26 (1963).Article 

Google Scholar 
Lundquist, K. Acidolysis. In Methods in Lignin Chemistry (eds. Lin, S. Y. & Dence, C. W.) 289–300 (Springer, Berlin, Heidelberg, 1992).Brunow, G. et al. Oxidative Coupling of Phenols and the Biosynthesis of Lignin. In Lignin and Lignan Biosynthesis vol. 697 131–147 (American Chemical Society, 1998).Karhunen, P., Rummakko, P., Sipilä, J., Brunow, G. & Kilpeläinen, I. Dibenzodioxocins; a novel type of linkage in softwood lignins. Tetrahedron Lett 36, 169–170 (1995).Article 
CAS 

Google Scholar 
Freudenberg, K. & Renner, K.-C. Über Biphenyle und Diaryläther unter den Vorstufen des Lignins. Chem. Ber. 98, 1879–1892 (1965).Article 
CAS 

Google Scholar 
Kratzl, K., Gratzl, J. & Claus, P. Formation and degradation of biphenyl structures during alkaline oxidation of phenols with oxygen. In Lignin Structure and Reactions vol. 59 157–176 (American Chemical Society, 1966).Gierer, J. Chemical aspects of kraft pulping. Wood Sci. Technol. 14, 241–266 (1980).Article 
CAS 

Google Scholar 
Gierer, J. Chemistry of delignification. Wood Sci. Technol. 20, 1–33 (1986).Article 
CAS 

Google Scholar 
Gierer, J. Chemistry of delignification. Wood Sci. Technol. 19, 289–312 (1985).Article 
CAS 

Google Scholar 
Gierer, J. The chemistry of delignification – a general concept – Part II. 36, 55–64 (1982).Gratzl, J. S. & Chen, C.-L. Chemistry of pulping: lignin reactions. In Lignin: Historical, Biological, and Materials Perspectives vol. 742 392–421 (American Chemical Society, 1999).Karlsson, M., Romson, J., Elder, T., Emmer, Å. & Lawoko, M. Lignin structure and reactivity in the organosolv process studied by NMR Spectroscopy, mass spectrometry, and density functional theory. Biomacromolecules 24, 2314–2326 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nitsos, C. et al. Isolation and characterization of organosolv and alkaline lignins from hardwood and softwood biomass. ACS Sustain. Chem. Eng. 4, 5181–5193 (2016).Article 
CAS 

Google Scholar 
Jõul, P. et al. Characterization of Organosolv lignins and their application in the preparation of aerogels. Materials 15, 2861 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Musl, O. et al. Mapping of the hydrophobic composition of Lignosulfonates. ACS Sustain. Chem. Eng. 9, 16786–16795 (2021).Article 
CAS 

Google Scholar 
Mishra, P. K. & Ekielski, A. The self-assembly of lignin and its application in nanoparticle synthesis: a short review. Nanomaterials 9, 243 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Lindström, T. The colloidal behaviour of kraft lignin, Part I: Association and gelation of kraft lignin in aqueous solution. Colloid Polym. Sci 257, 277–285 (1979).Article 

Google Scholar 
Kasha, M., Rawls, H. R. & Ashraf El-Bayoumi, M. The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371–392 (1965).Article 
CAS 

Google Scholar 
Ratnaweera, D. R. et al. The impact of lignin source on its self-assembly in solution. RSC Adv 5, 67258–67266 (2015).Article 
CAS 

Google Scholar 
Dastpak, A. et al. Solubility study of lignin in industrial organic solvents and investigation of electrochemical properties of spray-coated solutions. Ind. Crops Prod. 148, 112310 (2020).Article 
CAS 

Google Scholar 
Schuerch, C. The solvent properties of liquids and their relation to the solubility, swelling, isolation and fractionation of lignin. J. Am. Chem. Soc. 74, 5061–5067 (1952).Article 
CAS 

Google Scholar 
Koleske, J. & Hansen, C. Chapter 35 -Paint and Coating Testing Manual, Fourteenth Edition of the Gardner-Sward Handbook. (2009).Sipponen, M. H., Lange, H., Ago, M. & Crestini, C. Understanding lignin aggregation processes. A case study: Budesonide entrapment and stimuli controlled release from lignin nanoparticles. ACS Sustain. Chem. Eng. 6, 9342–9351 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pylypchuk, I. V. et al. Molecular understanding of the morphology and properties of lignin nanoparticles: unravelling the potential for tailored applications. Green Chem 25, 4415–4428 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Duval, A., Vilaplana, F., Crestini, C. & Lawoko, M. Solvent screening for the fractionation of industrial kraft lignin. Holzforschung 70, 11–20 (2016).Article 
CAS 

Google Scholar 
Zwilling, J. D. et al. Understanding lignin micro- and nanoparticle nucleation and growth in aqueous suspensions by solvent fractionation. Green Chem 23, 1001–1012 (2021).Article 
CAS 

Google Scholar 
Reichardt, C. & Welton, T. Solvents and Solvent Effects in Organic Chemistry. (Wiley-VCH, 2010).Freudenberg, K. & Lautsch, W. Zur Konstitution des Fichtenlignins. Naturwissenschaften 27, 227–228 (1939).Article 
CAS 

Google Scholar 
Li, Q., Zhang, H., Lee, J. & Wan, C. Size-tailorable lignin nanoparticle synthesis: effects of solution chemistry and DLVO forces on amphiphilic balance of lignin. Green Chem. 25, 9301–9312 (2023).Article 
CAS 

Google Scholar 
Myerson, A., Erdemir, D. & Lee, A. Y. Handbook of Industrial Crystallization. Cambridge University Pre. (Cambridge University Press, Cambridge, USA, 2019).Thanh, N. T. K., Maclean, N. & Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zhang, X. et al. Determination of the structures of lignin subunits and nanoparticles in solution by small‐angle neutron scattering: towards improving lignin valorization. ChemSusChem 15, e202201230 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yang, M., Zhao, W., Singh, S., Simmons, B. & Cheng, G. On the solution structure of kraft lignin in ethylene glycol and its implication for nanoparticle preparation. Nanoscale Adv. 1, 299–304 (2019).Article 
CAS 
PubMed 

Google Scholar 
Pylypchuk, I. V., Riazanova, A., Lindström, M. E. & Sevastyanova, O. Structural and molecular-weight-dependency in the formation of lignin nanoparticles from fractionated soft- and hardwood lignins. Green Chem. 23, 3061–3072 (2021).Article 
CAS 

Google Scholar 
Chen, L. et al. New insight into lignin aggregation guiding efficient synthesis and functionalization of a lignin nanosphere with excellent performance. Green Chem. 24, 285–294 (2022).Article 
CAS 

Google Scholar 
Beisl, S., Miltner, A. & Friedl, A. Lignin from micro- to nanosize: production methods. Int. J. Mol. Sci. 18, 1244 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Iravani, S. & Varma, R. S. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 22, 612–636 (2020).Article 
CAS 

Google Scholar 
Salentinig, S. & Schubert, M. Softwood lignin self-assembly for nanomaterial design. Biomacromolecules 18, 2649–2653 (2017).Article 
CAS 
PubMed 

Google Scholar 
Xiong, F. et al. Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly. Ind. Crops Prod. 100, 146–152 (2017).Article 
CAS 

Google Scholar 
Pylypchuk, I. V., Lindén, P. A., Lindström, M. E. & Sevastyanova, O. New Insight into the Surface Structure of Lignin Nanoparticles Revealed by 1 H Liquid-State NMR Spectroscopy. ACS Sustain. Chem. Eng. 8, 13805–13812 (2020).Article 
CAS 

Google Scholar 
Zhao, W. et al. From lignin subunits to aggregates: insights into lignin solubilization. Green Chem 19, 3272–3281 (2017).Article 
CAS 

Google Scholar 
Hu, G., Hu, J., Chen, H., Song, S. & Chu, F. Influence of pH and ionic strength on the aggregation behaviors of xylan rich hemicelluloses with alkaline lignins. BioResources 16, 7608–7622 (2021).Article 
CAS 

Google Scholar 
Alipoormazandarani, N. et al. Functional lignin nanoparticles with tunable size and surface properties: fabrication, characterization, and use in layer-by-layer assembly. ACS Appl. Mater. Interfaces 13, 26308–26317 (2021).Article 
CAS 
PubMed 

Google Scholar 
Collins, K. D. Charge density-dependent strength of hydration and biological structure. Biophys. J. 72, 65–76 (1997).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Leskinen, T. et al. Scaling up production of colloidal lignin particles – OPEN ACCESS. Nord. Pulp Pap. Res. J. 32, 586–596 (2017).Article 
CAS 

Google Scholar 
Norgren, M., Edlund, H. & Wågberg, L. Aggregation of Lignin Derivatives under Alkaline Conditions. Kinetics and Aggregate Structure. Langmuir 18, 2859–2865 (2002).Article 
CAS 

Google Scholar 
Chum, H. Assessment of biobased materials. SERI/TR-234-3610, 7151941, ON: DE90000300 https://www.osti.gov/servlets/purl/7151941/ (1989).Ago, M. et al. Supramolecular assemblies of lignin into nano- and microparticles. MRS Bull 42, 371–378 (2017).Article 
CAS 

Google Scholar 
Österberg, M., Sipponen, M. H., Mattos, B. D. & Rojas, O. J. Spherical lignin particles: a review on their sustainability and applications. Green Chem 22, 2712–2733 (2020).Article 

Google Scholar 
Hubbe, M. A., Trovagunta, R., Zambrano, F., Tiller, P. & Jardim, J. Self-assembly fundamentals in the reconstruction of lignocellulosic materials: A review. BioResources 18, 4262–4331 (2023).Article 

Google Scholar 
More, A., Elder, T., Pajer, N., Argyropoulos, D. S. & Jiang, Z. Novel and integrated process for the valorization of kraft lignin to produce lignin-containing vitrimers. ACS Omega 8, 1097–1108 (2023).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles