Identification of neutrophil extracellular trap-related biomarkers in non-alcoholic fatty liver disease through machine learning and single-cell analysis

Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1), 73–84. https://doi.org/10.1002/hep.28431 (2016).Article 
PubMed 

Google Scholar 
Sonsuz, A., Basaranoglu, M. & Ozbay, G. Relationship between aminotransferase levels and histopathological findings in patients with nonalcoholic steatohepatitis. Am. J. Gastroenterol. 95(5), 1370–1371 (2000).Article 
CAS 
PubMed 

Google Scholar 
Moore, J. B. From sugar to liver fat and public health: Systems biology driven studies in understanding non-alcoholic fatty liver disease pathogenesis. Proc. Nutr. Soc. 78(3), 290–304. https://doi.org/10.1017/S0029665119000570 (2019).Article 
PubMed 

Google Scholar 
Estes, C., Razavi, H., Loomba, R., Younossi, Z. & Sanyal, A. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67(1), 123–133. https://doi.org/10.1002/hep.29466 (2018).Article 
CAS 
PubMed 

Google Scholar 
Estes, C. et al. Modeling Nafld Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 69(4), 896–904. https://doi.org/10.1016/j.jhep.2018.05.036 (2018).Article 
PubMed 

Google Scholar 
Seidman, J. S. et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity https://doi.org/10.1016/j.immuni.2020.04.001 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Gadd, V. L. et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 59(4), 1393–1405. https://doi.org/10.1002/hep.26937 (2014).Article 
PubMed 

Google Scholar 
Gomes, A. L. et al. Metabolic inflammation-associated Il-17a causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30(1), 161–175. https://doi.org/10.1016/j.ccell.2016.05.020 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wandrer, F. et al. Tnf-receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in Nafld mice. Cell Death Dis/ 11(3), 212. https://doi.org/10.1038/s41419-020-2411-6 (2020).Article 
CAS 
PubMed 

Google Scholar 
Weiskirchen, R. & Tacke, F. Immune surveillance of liver cancer in non-alcoholic fatty liver disease: Excess lipids cause Cd4 T-cells loss and promote hepatocellular carcinoma development. Hepatobiliary Surg. Nutr. 5(5), 433–437 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Rawat, K. & Shrivastava, A. Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. Inflamm. Res. 71(12), 1477–1488. https://doi.org/10.1007/s00011-022-01627-6 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Witter, A. R., Okunnu, B. M. & Berg, R. E. The essential role of neutrophils during infection with the intracellular bacterial pathogen listeria monocytogenes. J. Immunol. 197(5), 1557–1565. https://doi.org/10.4049/jimmunol.1600599 (2016).Article 
CAS 
PubMed 

Google Scholar 
Galani, I. E. & Andreakos, E. Neutrophils in viral infections: Current concepts and caveats. J. Leukoc. Biol. 98(4), 557–564. https://doi.org/10.1189/jlb.4VMR1114-555R (2015).Article 
CAS 
PubMed 

Google Scholar 
Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303(5663), 1532–1535 (2004).Article 
ADS 
CAS 
PubMed 

Google Scholar 
van der Windt, D. J. et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 68(4), 1347–1360. https://doi.org/10.1002/hep.29914 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wang, H. et al. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis. J. Hepatol. 75(6), 1271–1283. https://doi.org/10.1016/j.jhep.2021.07.032 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yu, X. et al. Identification and validation of disulfidptosis-associated molecular clusters in non-alcoholic fatty liver disease. Front. Genet. 14, 1251999. https://doi.org/10.3389/fgene.2023.1251999 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The Sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28(6), 882–883. https://doi.org/10.1093/bioinformatics/bts034 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Colaprico, A. et al. Tcgabiolinks: An R/bioconductor package for integrative analysis of Tcga data. Nucleic Acids Res. 44(8), e71. https://doi.org/10.1093/nar/gkv1507 (2016).Article 
CAS 
PubMed 

Google Scholar 
Dwyer, M. et al. Cystic fibrosis sputum DNA has netosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J. Innate Immun. 6(6), 765–779. https://doi.org/10.1159/000363242 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18(2), 134–147. https://doi.org/10.1038/nri.2017.105 (2018).Article 
CAS 
PubMed 

Google Scholar 
Stuart, T. et al. Comprehensive integration of single-cell data. Cell https://doi.org/10.1016/j.cell.2019.05.031 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
He, W. et al. Identifying a distinct fibrosis subset of nafld via molecular profiling and the involvement of profibrotic macrophages. J. Transl. Med. 21(1), 448. https://doi.org/10.1186/s12967-023-04300-6 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jin, S. et al. Inference and analysis of cell-cell communication using cellchat. Nat. Commun. 12(1), 1088. https://doi.org/10.1038/s41467-021-21246-9 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Langfelder, P. & Horvath, S. Wgcna: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559. https://doi.org/10.1186/1471-2105-9-559 (2008).Article 
CAS 

Google Scholar 
Liu, J. et al. Eleven genes associated with progression and prognosis of endometrial cancer (Ec) identified by comprehensive bioinformatics analysis. Cancer Cell Int. 19, 136. https://doi.org/10.1186/s12935-019-0859-1 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, C., Delcher, C., Shenkman, E. & Ranka, S. Machine learning approaches for predicting high cost high need patient expenditures in health care. Biomed. Eng. Online 17(Suppl 1), 131. https://doi.org/10.1186/s12938-018-0568-3 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ellis, K. et al. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Physiol. Meas. 35(11), 2191–2203. https://doi.org/10.1088/0967-3334/35/11/2191 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Tan, Q., Li, W. & Chen, X. Identification the source of fecal contamination for geographically unassociated samples with a statistical classification model based on support vector machine. J. Hazard. Mater. 407, 124821. https://doi.org/10.1016/j.jhazmat.2020.124821 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhang, M. et al. An immune-related signature predicts survival in patients with lung adenocarcinoma. Front. Oncol. 9, 1314. https://doi.org/10.3389/fonc.2019.01314 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F, Chang C, et al. Misc Functions of the department of statistics, probability theory group (Formerly: E1071), Package E1071. TU Wien (2015).Alderden, J. et al. Predicting pressure injury in critical care patients: A machine-learning model. Am. J. Crit. Care 27(6), 461–468. https://doi.org/10.4037/ajcc2018525 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Robin, X. et al. Proc: An open-source package for R and S+ to analyze and compare roc curves. BMC Bioinform. 12, 77. https://doi.org/10.1186/1471-2105-12-77 (2011).Article 

Google Scholar 
Fox, J., Weisberg, S., Friendly, M., Hong, J. R Package Version 4.0–0. Google Scholar (2017).Hänzelmann, S., Castelo, R. & Guinney, J. Gsva: Gene set variation analysis for microarray and Rna-Seq data. BMC Bioinform. 14, 1–15 (2013).Article 

Google Scholar 
Kumar, L. & Futschik, M. E. Mfuzz: A software package for soft clustering of microarray data. Bioinformation 2(1), 5 (2007).Article 
PubMed 
PubMed Central 

Google Scholar 
Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4), 782–795. https://doi.org/10.1016/j.immuni.2013.10.003 (2013).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z. et al. Visfatin is a multifaceted molecule that exerts regulation effects on inflammation and apoptosis in Raw264.7 cells and mice immune organs. Front. Immunol. https://doi.org/10.3389/fimmu.2022.1018973 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Son, Y. & Paton, C. M. A review of free fatty acid-induced cell signaling, angiopoietin-like protein 4, and skeletal muscle differentiation. Front. Physiol. https://doi.org/10.3389/fphys.2022.987977 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 11(9), 785–797. https://doi.org/10.1038/ni.1923 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, P. et al. Pad4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207(9), 1853–1862. https://doi.org/10.1084/jem.20100239 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146(3), 726–735. https://doi.org/10.1053/j.gastro.2013.11.049 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zhang, J. et al. Association between serum free fatty acid levels and nonalcoholic fatty liver disease: A cross-sectional study. Sci. Rep. 4, 5832. https://doi.org/10.1038/srep05832 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
O’Farrell, M. et al. Fasn inhibition targets multiple drivers of nash by reducing steatosis, inflammation and fibrosis in preclinical models. Sci. Rep. 12(1), 15661. https://doi.org/10.1038/s41598-022-19459-z (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, K., Wang, F.-S. & Xu, R. Neutrophils in liver diseases: Pathogenesis and therapeutic targets. Cell. Mol. Immunol. 18(1), 38–44. https://doi.org/10.1038/s41423-020-00560-0 (2021).Article 
CAS 
PubMed 

Google Scholar 
Honda, M. & Kubes, P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat. Rev. Gastroenterol. Hepatol. 15(4), 206–221. https://doi.org/10.1038/nrgastro.2017.183 (2018).Article 
CAS 
PubMed 

Google Scholar 
Younossi, Z. M. et al. The global epidemiology of Nafld and nash in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 71(4), 793–801. https://doi.org/10.1016/j.jhep.2019.06.021 (2019).Article 
PubMed 

Google Scholar 
Stafford, I. S. et al. A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ Digit. Med. 3, 30. https://doi.org/10.1038/s41746-020-0229-3 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blackshear, P. J. & Perera, L. Phylogenetic distribution and evolution of the linked Rna-binding and Not1-binding domains in the tristetraprolin family of tandem Ccch zinc finger proteins. J. Interferon Cytokine Res. 34(4), 297–306. https://doi.org/10.1089/jir.2013.0150 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blackshear, P. J. et al. Zfp36l3, a rodent X chromosome gene encoding a placenta-specific member of the tristetraprolin family of Ccch tandem zinc finger proteins. Biol. Reprod. 73(2), 297–307 (2005).Article 
CAS 
PubMed 

Google Scholar 
Feitelson, M. A. et al. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin. Cancer Biol. 35, S25–S54. https://doi.org/10.1016/j.semcancer.2015.02.006 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tan, F. E. & Elowitz, M. B. Brf1 Posttranscriptionally regulates pluripotency and differentiation responses downstream of Erk map kinase. Proc. Natl. Acad. Sci. U. S. A. 111(17), E1740–E1748. https://doi.org/10.1073/pnas.1320873111 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Johnson, B. A. & Blackwell, T. K. Multiple tristetraprolin sequence domains required to induce apoptosis and modulate responses to tnfalpha through distinct pathways. Oncogene 21(27), 4237–4246 (2002).Article 
CAS 
PubMed 

Google Scholar 
Tiedje, C. et al. The Rna-binding protein Ttp is a global post-transcriptional regulator of feedback control in inflammation. Nucleic Acids Res. 44(15), 7418–7440. https://doi.org/10.1093/nar/gkw474 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stumpo, D. J. et al. Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36l1, a gene encoding a ccch tandem zinc finger protein of the tristetraprolin family. Mol. Cell. Biol. 24(14), 6445–6455 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Stumpo, D. J. et al. Targeted disruption of Zfp36l2, encoding a ccch tandem zinc finger Rna-binding protein, results in defective hematopoiesis. Blood 114(12), 2401–2410. https://doi.org/10.1182/blood-2009-04-214619 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ramos, S. B. V. et al. The Ccch tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 131(19), 4883–4893 (2004).Article 
CAS 
PubMed 

Google Scholar 
Adachi, S. et al. Zfp36l1 and Zfp36l2 control Ldlr Mrna stability via the Erk-Rsk pathway. Nucleic Acids Res. 42(15), 10037–10049. https://doi.org/10.1093/nar/gku652 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dominguez-Villar, M. & Hafler, D. A. Regulatory T cells in autoimmune disease. Nat. Immunol. 19(7), 665–673. https://doi.org/10.1038/s41590-018-0120-4 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mandel, M., Gurevich, M., Pauzner, R., Kaminski, N. & Achiron, A. Autoimmunity gene expression portrait: Specific signature that intersects or differentiates between multiple sclerosis and systemic lupus erythematosus. Clin. Exp. Immunol. 138(1), 164–170 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Parnell, G. P. et al. The autoimmune disease-associated transcription factors eomes and Tbx21 are dysregulated in multiple sclerosis and define a molecular subtype of disease. Clin. Immunol. 151(1), 16–24. https://doi.org/10.1016/j.clim.2014.01.003 (2014).Article 
CAS 
PubMed 

Google Scholar 
Makita, S. et al. Rna-binding protein Zfp36l2 downregulates helios expression and suppresses the function of regulatory T cells. Front. Immunol. 11, 1291. https://doi.org/10.3389/fimmu.2020.01291 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cook, M. E. et al. The Zfp36 family of RNA binding proteins regulates homeostatic and autoreactive T cell responses. Sci. Immunol. 7(76), eabo0981. https://doi.org/10.1126/sciimmunol.abo0981 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Park, C. G., Lee, S. Y., Kandala, G., Lee, S. Y. & Choi, Y. A novel gene product that couples Tcr signaling to Fas(Cd95) expression in activation-induced cell death. Immunity 4(6), 583–591 (1996).Article 
CAS 
PubMed 

Google Scholar 
Neef, R., Kuske, M. A., Pröls, E. & Johnson, J. P. Identification of the human Phlda1/Tdag51 gene: Down-regulation in metastatic melanoma contributes to apoptosis resistance and growth deregulation. Cancer Res. 62(20), 5920–5929 (2002).CAS 
PubMed 

Google Scholar 
Wu, D. et al. Lncrna Hif1a antisense Rna 2 modulates trophoblast cell invasion and proliferation through upregulating phlda1 expression. Mol. Ther. Nucleic Acids 16, 605–615. https://doi.org/10.1016/j.omtn.2019.04.009 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Basseri, S. et al. Loss of Tdag51 results in mature-onset obesity, hepatic steatosis, and insulin resistance by regulating lipogenesis. Diabetes 62(1), 158–169. https://doi.org/10.2337/db12-0256 (2013).Article 
CAS 
PubMed 

Google Scholar 
Sellheyer, K. & Krahl, D. Phlda1 (Tdag51) is a follicular stem cell marker and differentiates between morphoeic basal cell carcinoma and desmoplastic trichoepithelioma. Br. J. Dermatol. 164(1), 141–147. https://doi.org/10.1111/j.1365-2133.2010.10045.x (2011).Article 
CAS 
PubMed 

Google Scholar 
Han, C. et al. Phlda1 promotes microglia-mediated neuroinflammation via regulating K63-linked ubiquitination of Traf6. Brain Behav. Immun. 88, 640–653. https://doi.org/10.1016/j.bbi.2020.04.064 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhao, H. et al. Phlda1 blockade alleviates cerebral ischemia/reperfusion injury by affecting microglial M1/M2 polarization and Nlrp3 inflammasome activation. Neuroscience 487, 66–77. https://doi.org/10.1016/j.neuroscience.2022.01.018 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Yousof, T. R. et al. Restoration of the Er stress response protein Tdag51 in hepatocytes mitigates Nafld in mice. J. Biol. Chem. 300(2), 105655. https://doi.org/10.1016/j.jbc.2024.105655 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Park, E. S. et al. Tdag51 promotes transcription factor foxo1 activity during Lps-induced inflammatory responses. EMBO J. 42(13), e111867. https://doi.org/10.15252/embj.2022111867 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140(6), 805–820. https://doi.org/10.1016/j.cell.2010.01.022 (2010).Article 
CAS 
PubMed 

Google Scholar 
Duffy, L. & O’Reilly, S. C. Toll-like receptors in the pathogenesis of autoimmune diseases: Recent and emerging translational developments. Immunotargets Ther. 5, 69–80. https://doi.org/10.2147/ITT.S89795 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kashani, B., Zandi, Z., Pourbagheri-Sigaroodi, A., Bashash, D. & Ghaffari, S. H. The role of toll-like receptor 4 (Tlr4) in cancer progression: A possible therapeutic target?. J. Cell. Physiol. 236(6), 4121–4137. https://doi.org/10.1002/jcp.30166 (2021).Article 
CAS 
PubMed 

Google Scholar 
Khan, M. A. et al. Jnk activation turns on Lps- and gram-negative bacteria-induced nadph oxidase-dependent suicidal netosis. Sci. Rep. 7(1), 3409. https://doi.org/10.1038/s41598-017-03257-z (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alegre, F., Pelegrin, P. & Feldstein, A. E. Inflammasomes in liver fibrosis. Semin. Liver Dis. 37(2), 119–127. https://doi.org/10.1055/s-0037-1601350 (2017).Article 
CAS 
PubMed 

Google Scholar 
Mridha, A. R. et al. Nlrp3 inflammasome blockade reduces liver inflammation and fibrosis in experimental nash in mice. J. Hepatol. 66(5), 1037–1046. https://doi.org/10.1016/j.jhep.2017.01.022 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, X., Dong, L., Lin, X. & Li, J. Relevance of the Nlrp3 inflammasome in the pathogenesis of chronic liver disease. Front. Immunol. 8, 1728. https://doi.org/10.3389/fimmu.2017.01728 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cai, B., Cai, J.-P., Luo, Y.-L., Chen, C. & Zhang, S. The specific roles of Jak/Stat signaling pathway in sepsis. Inflammation 38(4), 1599–608. https://doi.org/10.1007/s10753-015-0135-z (2015).Article 
CAS 
PubMed 

Google Scholar 
Shi, S. Y. et al. Janus kinase 2 (Jak2) dissociates hepatosteatosis from hepatocellular carcinoma in mice. J. Biol. Chem. 292(9), 3789–3799. https://doi.org/10.1074/jbc.M116.752519 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wohlmann, A., Sebastian, K., Borowski, A., Krause, S. & Friedrich, K. Signal transduction by the atopy-associated human thymic stromal lymphopoietin (Tslp) receptor depends on janus kinase function. Biol. Chem. 391(2–3), 181–186. https://doi.org/10.1515/bc.2010.029 (2010).Article 
CAS 
PubMed 

Google Scholar 
Heo, Y. J. et al. Visfatin induces inflammation and insulin resistance via the Nf-<I>Κ</I>B and Stat3 signaling pathways in hepatocytes. J. Diabetes Res. 2019, 4021623. https://doi.org/10.1155/2019/4021623 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, S. et al. Angptl3: A novel biomarker and promising therapeutic target. J. Drug Target 27(8), 876–884. https://doi.org/10.1080/1061186X.2019.1566342 (2019).Article 
CAS 
PubMed 

Google Scholar 
Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part II: Role in immunity. Front. Immunol. https://doi.org/10.3389/fimmu.2015.00257 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles