Computational analysis of modular diazotransfer reactions for the development of predictive reactivity models and diazotransfer reagents

Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).Article 
CAS 

Google Scholar 
Moses, J. E. & Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).Article 
CAS 
PubMed 

Google Scholar 
Devaraj, N. K. & Finn, M. G. Introduction: click chemistry. Chem. Rev. 121, 6697–6698 (2021).Article 
CAS 
PubMed 

Google Scholar 
Finn, M. G., Kolb, H. C. & Sharpless, K. B. Click chemistry connections for functional discovery. Nat. Synth. 1, 8–10 (2022).Article 

Google Scholar 
Huisgen, R. 1,3-Dipolar cycloadditions past and future. Angew. Chem. Int. Ed. 2, 565–632 (1963).Article 

Google Scholar 
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).Article 
CAS 

Google Scholar 
Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).Article 
PubMed 

Google Scholar 
Meldal, M. & Tornøe, C. W. Cu-catalyzed azide–alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008).Article 
CAS 
PubMed 

Google Scholar 
Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bräse, S., Gil, C., Knepper, K. & Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. 44, 5188–5240 (2005).Article 

Google Scholar 
Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide–alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).Article 
CAS 
PubMed 

Google Scholar 
Manetsch, R. et al. In situ click chemistry: enzyme inhibitors made to their own specifications. J. Am. Chem. Soc. 126, 12809–12818 (2004).Article 
CAS 
PubMed 

Google Scholar 
Narayan, S. et al. “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 44, 3275–3279 (2005).Article 
CAS 

Google Scholar 
Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. USA 104, 16793–16797 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).Article 
CAS 

Google Scholar 
Kölmel, D. K. & Kool, E. T. Oximes and hydrazones in bioconjugation: mechanism and catalysis. Chem. Rev. 117, 10358–10376 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Sun, S. et al. Phosphorus fluoride exchange: multidimensional catalytic click chemistry from phosphorus connective hubs. Chem 9, 2128–2143 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).Article 
CAS 

Google Scholar 
Zeng, D., Deng, W.-P. & Jiang, X. Linkage chemistry of S(VI) fluorides. Chem. Eur. J. 29, e202300536 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zeng, D., Deng, W.-P. & Jiang, X. Advances in the construction of diverse SuFEx linkers. Natl Sci. Rev. 10, nwad123 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bernús, M. et al. A modular flow platform for sulfur(VI) fluoride exchange ligation of small molecules, peptides and proteins. Nat. Synth. 3, 185–191 (2024).Article 

Google Scholar 
Zeng, D., Ma, Y., Deng, W.-P., Wang, M. & Jiang, X. The linkage of sulfonimidoyl fluorides and unactivated alkenes via hydrosulfonimidoylation. Angew. Chem. Int. Ed. 61, e202207100 (2022).Article 
CAS 

Google Scholar 
Zhao, S., Zeng, D., Wang, M. & Jiang, X. C-SuFEx linkage of sulfonimidoyl fluorides and organotrifluoroborates. Nat. Commun. 15, 727 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Teng, S., Shultz, Z. P., Shan, C., Wojtas, L. & Lopchuk, J. M. Asymmetric synthesis of sulfoximines, sulfonimidoyl fluorides and sulfonimidamides enabled by an enantiopure bifunctional S(VI) reagent. Nat. Chem. 16, 183–192 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. Multidimensional SuFEx click chemistry: sequential sulfur(VI) fluoride exchange connections of diverse modules launched from an SOF4 hub. Angew. Chem. Int. Ed. 56, 2903–2908 (2017).Article 
CAS 

Google Scholar 
Liang, D.-D. et al. Silicon-free SuFEx reactions of sulfonimidoyl fluorides: scope, enantioselectivity, and mechanism. Angew. Chem. Int. Ed. 59, 7494–7500 (2020).Article 
CAS 

Google Scholar 
Peng, Z. et al. Enantioselective sulfur(VI) fluoride exchange reaction of iminosulfur oxydifluorides. Nat. Chem. 16, 353–362 (2024).Article 
CAS 
PubMed 

Google Scholar 
Barrow, A. S. et al. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48, 4731–4758 (2019).Article 
CAS 
PubMed 

Google Scholar 
Li, S. et al. SuFExable polymers with helical structures derived from thionyl tetrafluoride. Nat. Chem. 13, 858–867 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liang, D.-D., Pujari, S. P., Subramaniam, M., Besten, M. & Zuilhof, H. Configurationally chiral SuFEx-based polymers. Angew. Chem. Int. Ed. 61, e202116158 (2022).Article 
CAS 

Google Scholar 
Chao, Y. et al. Sulfur–phenolate exchange: SuFEx-derived dynamic covalent reactions and degradation of SuFEx polymers. Angew. Chem. Int. Ed. 61, e202207456 (2022).Article 
CAS 

Google Scholar 
Lou, T. S.-B. & Willis, M. C. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat. Rev. Chem. 6, 146–162 (2022).Article 
CAS 
PubMed 

Google Scholar 
Hoppmann, C. & Wang, L. Proximity-enabled bioreactivity to generate covalent peptide inhibitors of p53–Mdm4. Chem. Commun. 52, 5140–5143 (2016).Article 
CAS 

Google Scholar 
Yang, B. et al. Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking mass spectrometry. Proc. Natl Acad. Sci. USA 115, 11162–11167 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, N. et al. Genetically encoding fluorosulfate‑l‑tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J. Am. Chem. Soc. 140, 4995–4999 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zeng, D., Ma, Y., Deng, W.-P., Wang, M. & Jiang, X. Divergent sulfur(VI) fluoride exchange linkage of sulfonimidoyl fluorides and alkynes. Nat. Synth. 1, 455–463 (2022).Article 

Google Scholar 
Li, S., Wang, N., Yu, B., Sun, W. & Wang, L. Genetically encoded chemical crosslinking of carbohydrate. Nat. Chem. 15, 33–42 (2023).Article 
PubMed 

Google Scholar 
Sun, W. et al. Genetically encoded chemical crosslinking of RNA in vivo. Nat. Chem. 15, 21–32 (2023).Article 
CAS 
PubMed 

Google Scholar 
Qin, Z. et al. Discovering covalent inhibitors of protein–protein interactions from trillions of sulfur(VI) fluoride exchange-modified oligonucleotides. Nat. Chem. 15, 1705–1714 (2023).Article 
CAS 
PubMed 

Google Scholar 
Li, Q. et al. Developing covalent protein drugs via proximity enabled reactive therapeutics. Cell 182, 85–97 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yu, B. et al. Accelerating PERx reaction enables covalent nanobodies for potent neutralization of SARS-CoV-2 and variants. Chem 8, 2766–2783 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Homer, J. A. et al. Sulfur fluoride exchange. Nat. Rev. Methods Primers 3, 58 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ruff, J. K. Sulfur oxyfluoride derivatives. II. Inorg. Chem. 4, 567–570 (1965).Article 
CAS 

Google Scholar 
Meng, G. et al. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature 574, 86–89 (2019).Article 
CAS 
PubMed 

Google Scholar 
Krasheninina, O. A., Thaler, J., Erlacher, M. D. & Micura, R. Amine-to-azide conversion on native RNA via metal-free diazotransfer opens new avenues for RNA manipulations. Angew. Chem. Int. Ed. 60, 6970–6974 (2021).Article 
CAS 

Google Scholar 
Liu, H. et al. Construction of an IMiD-based azide library as a kit for PROTAC research. Org. Biomol. Chem. 19, 166–170 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhang, J. & Dong, J. Modular click chemistry library: searching for better functions. Chin. J. Chem. 39, 1025–1027 (2021).Article 
CAS 

Google Scholar 
Moreno, S., Pittol, J. M. R., Hartl, M. & Micura, R. Robust synthesis of 2′-azido modified RNA from 2′-amino precursors by diazotransfer reaction. Org. Biomol. Chem. 20, 7845–7850 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kofsky, J. M., Daskhan, G. C., Macauley, M. S. & Capicciotti, C. J. Efficient synthesis of azido sugars using fluorosulfuryl azide diazotransfer reagent. Eur. J. Org. Chem. 2022, e202200108 (2022).Article 
CAS 

Google Scholar 
Cui, Q. et al. Discovery of a novel potent antitumor molecule, P19G1, by erlotinib derivative libraries synthesized by modular click-chemistry. Technol. Cancer Res. Treat. 21, 1–14 (2022).Article 

Google Scholar 
Xin, Y. et al. Affinity selection of double-click triazole libraries for rapid discovery of allosteric modulators for GLP-1 receptor. Proc. Natl Acad. Sci. USA 120, e2220767120 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tian, W. Q. & Wang, Y. A. Mechanisms of Staudinger reactions within density functional theory. J. Org. Chem. 69, 4299–4308 (2004).Article 
CAS 
PubMed 

Google Scholar 
Pandiakumar, A. K., Sarma, S. P. & Samuelson, A. G. Mechanistic studies on the diazo transfer reaction. Tetrahedron Lett. 55, 2917–2920 (2014).Article 
CAS 

Google Scholar 
Stevens, M. Y., Sawant, R. T. & Odell, L. R. Synthesis of sulfonyl azides via diazotransfer using an imidazole-1-sulfonyl azide salt: scope and 15N NMR labeling experiments. J. Org. Chem. 79, 4826–4831 (2014).Article 
CAS 
PubMed 

Google Scholar 
Gwak, S., Lee, J. H., Kwon, H.-J. & Han, H. A study on the diazo-transfer reaction using o-nitrobenzenesulfonyl azide. Synlett 35, 1429–1435 (2024).CAS 

Google Scholar 
Fischer, W. & Anselme, J.-P. Reaction of amine anions with p-toluenesulfonyl azide. Novel azide synthesis. J. Am. Chem. Soc. 89, 5284–5285 (1967).Article 
CAS 

Google Scholar 
Nyffeler, P. T., Liang, C.-H., Koeller, K. M. & Wong, C.-H. The chemistry of amine–azide interconversion: catalytic diazotransfer and regioselective azide reduction. J. Am. Chem. Soc. 124, 10773–10778 (2002).Article 
CAS 
PubMed 

Google Scholar 
Luy, J.-N. & Tonner, R. Complementary base lowers the barrier in SuFEx click chemistry for primary amine nucleophiles. ACS Omega 5, 31432–31439 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wei, M. et al. A broad-spectrum catalytic amidation of sulfonyl fluorides and fluorosulfates. Angew. Chem. Int. Ed. 60, 7397–7404 (2021).Article 
CAS 

Google Scholar 
Han, B. et al. Calcium bistriflimide-mediated sulfur(VI)–fluoride exchange (SuFEx): mechanistic insights toward instigating catalysis. Inorg. Chem. 61, 9746–9755 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Smedley, C. J. et al. Accelerated SuFEx click chemistry for modular synthesis. Angew. Chem. Int. Ed. 61, e202112375 (2022).Article 
CAS 

Google Scholar 
Yang, J.-D., Xue, X.-S., Ji, P., Li, X. & Cheng, J.-P. Internet bond-energy databank (pKa and BDE): iBonD home page. http://ibond.nankai.edu.cn. Accessed Aug 2022.Regitz, M. New methods of preparative organic chemistry. Transfer of diazo groups. Angew. Chem. Int. Ed. 6, 733–749 (1967).Article 
CAS 

Google Scholar 
Goddard-Borger, E. D. & Stick, R. V. An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org. Lett. 9, 3797–3800 (2007).Article 
CAS 
PubMed 

Google Scholar 
Kitamura, M., Tashiro, N. & Okauchi, T. 2-Azido-1,3-dimethylimidazolinium chloride: an efficient diazo transfer reagent for 1,3-dicarbonyl compounds. Synlett 18, 2943–2944 (2009).Article 

Google Scholar 
Samet, M., Buhle, J., Zhou, Y. & Kass, S. R. Charge-enhanced acidity and catalyst activation. J. Am. Chem. Soc. 137, 4678–4680 (2015).Article 
CAS 
PubMed 

Google Scholar 
Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).Article 
PubMed 

Google Scholar 
Johnson, C. R., Janiga, E. R. & Haake, M. Chemistry of sulfoxides and related compounds. X. Ylides from salts of sulfoximines. J. Am. Chem. Soc. 90, 3890–3891 (1968).Article 
CAS 

Google Scholar 
Noritake, S., Shibata, N., Nakamura, S., Toru, T. & Shiro, M. Fluorinated Johnson reagent for transfer-trifluoromethylation to carbon nucleophiles. Eur. J. Org. Chem. 2008, 3465–3468 (2008).Article 

Google Scholar 
Vogel, J. A. et al. Synthesis of highly reactive sulfone iminium fluorides and their use in deoxyfluorination and sulfur fluoride exchange chemistry. Org. Lett. 24, 5962–5966 (2022).Article 
CAS 
PubMed 

Google Scholar 
Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, 2016).Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).Article 
CAS 
PubMed 

Google Scholar 
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).Article 
CAS 
PubMed 

Google Scholar 
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).Article 
CAS 
PubMed 

Google Scholar 
Grimme, S. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J. Chem. Theory Comput. 15, 2847–2862 (2019).Article 
CAS 
PubMed 

Google Scholar 
Riplinger, C. & Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013).Article 
PubMed 

Google Scholar 
Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2011).Article 

Google Scholar 
Luchini, G., Alegre-Requena, J. V., Funes-Ardoiz, I. & Paton, R. S. GoodVibes: automated thermochemistry for heterogeneous computational chemistry data [version 1; peer review: 2 approved with reservations]. F1000Res. 9, 291 (2020).Article 

Google Scholar 
Alecu, I. M., Zheng, J., Zhao, Y. & Truhlar, D. G. Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J. Chem. Theory Comput. 6, 2872–2887 (2010).Article 
CAS 
PubMed 

Google Scholar 
Li, Y.-P., Gomes, J., Sharada, S. M., Bell, A. T. & Head-Gordon, M. Improved force-field parameters for QM/MM simulations of the energies of adsorption for molecules in zeolites and a free rotor correction to the rigid rotor harmonic oscillator model for adsorption enthalpies. J. Phys. Chem. C 119, 1840–1850 (2015).Article 
CAS 

Google Scholar 
Legault, C. Y. CYLview, 1.0b. http://www.cylview.org (Université de Sherbrooke, 2009).

Hot Topics

Related Articles