Synthetic and theoretical study on novel N-ylidic complexes of mercury as new antibacterial agents

Morris, D. G. Recent advances in the chemistry of ylides. Surv. Progress Chem. 10, 189–257 (1983).Article 

Google Scholar 
Bachrach, S. M. Molecular structure of phosphonium ylides. J. Org. Chem. 57, 4367–4373 (1992).Article 

Google Scholar 
Chauvin, R. & Canac, Y. Transition Metal Complexes of Neutral Eta1-Carbon Ligands. Vol. 30 (Springer Science & Business Media, 2010).Johnson, A. with special contributions by WC Kaska, KAO Statzewski and DA Dixon, Ylides and Imines of Phosphorus. Wiley, New York, chapters 6, 153-220 (1993).Coyne, E., Gilheany, D., Katritzky, A., Meth-Cohn, O. & Rees, C. Comprehensive Organic Functional Group Transformation (Pergamon Press, Elsevier, Oxford, 1995).
Google Scholar 
Clark, J. S., Dossetter, A. G. & Whittingham, W. G. Stereoselective synthesis of the bicyclic core structure of the highly oxidised sesquiterpene neoliacinic acid. Tetrahedron Lett. 37, 5605–5608 (1996).Article 

Google Scholar 
Krohnke, F. & Timmler, H. Ber. 69, 674 (1930).Navarro, R. & Urriolabeitia, E. P. α-Stabilized phosphoylides as versatile multifunctional ligands. J. Chem. Soc. Dalton Trans. 23, 4111–4122 (1999).Article 

Google Scholar 
Spannenberg, A., Baumann, W. & Rosenthal, U. Palladium (II) complexes of α-stabilized phosphorus ylides. Organometallics 19, 3991–3993 (2000).Article 

Google Scholar 
Ebrahim, M. M., Stoeckli-Evans, H. & Panchanatheswaran, K. Reactivity of mercury (II) halides with the unsymmetrical phosphorus ylide Ph2PCH2CH2PPh2C(H)C(O)Ph: Crystal structure of {HgI2 [PPh2CH2CH2PPh2C(H)C(O)Ph]}n. Polyhedron 26, 3491–3495 (2007).Article 

Google Scholar 
Sabounchei, S. J. et al. Synthesis and characterization of novel simultaneous C and O-coordinated and nitrate-bridged complexes of silver (I) with carbonyl-stabilized sulfonium ylides and their antibacterial activities. Dalton Trans. 42, 2520–2529 (2013).Article 
PubMed 

Google Scholar 
Sabounchei, S. J. et al. Pd(II) and Pt(II) complexes of α-keto stabilized sulfur ylide: Synthesis, structural, theoretical and catalytic activity studies. J. Mol. Struct. 1135, 174–185 (2017).Article 
ADS 

Google Scholar 
Bravo, P., Fronza, G., Ticozzi, C. & Gaudiano, G. Palladium (II) complexes with sulphonium ylides. J. Organomet. Chem. 74, 143–154 (1974).Article 

Google Scholar 
Deuerlein, S., Leusser, D., Flierler, U., Ott, H. & Stalke, D. [(thf)Li2{H2CS(Nt-Bu)2}]2: Synthesis, polymorphism, and experimental charge density to elucidate the bonding properties of a lithium sulfur ylide. Organometallics 27, 2306–2315 (2008).Article 

Google Scholar 
Sabounchei, S. J. et al. Reactivity of mercury(II) halides with the α-keto stabilized sulfonium ylides: Crystal structures of two new polymer and binuclear complexes and in vitro antibacterial study. Polyhedron 53, 1–7 (2013).Article 

Google Scholar 
Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. soc. 85, 3533–3539 (1963).Article 

Google Scholar 
Fronza, G., Bravo, P. & Ticozzi, C. Carbon-13 nuclear magnetic resonance studies of some phosphonium, arsonium, sulfonium and pyridinium keto-stabilized salts, and ylides and of their palladium(II) complexes. J. Organomet. Chem. 157, 299–310 (1978).Article 

Google Scholar 
Dega-Szafran, Z. et al. Experimental and quantum chemical evidences for C-H⋯ N hydrogen bonds involving quaternary pyridinium salts and pyridinium ylides. J. Mol. Struct. 555, 31–42 (2000).Article 
ADS 

Google Scholar 
Sabounchei, S. et al. A new Pd(II) complex of a sulfur ylide; Synthesis, X-ray characterization, theoretical study and catalytic activity toward the Suzuki-Miyaura reaction. Polyhedron 117, 273–282 (2016).Article 

Google Scholar 
Sabounchei, S. J., Gharacheh, M. A. & Hosseinzadeh, M. Synthesis and multinuclear NMR study of novel complexes of Zn(II) and Hg(II) containing phosphorus ylides. Asian J. Chem. 22, 1949–1956 (2010).
Google Scholar 
Sabounchei, S. J. et al. Structural, theoretical and multinuclear NMR study of mercury (II) and silver (I) complexes with two new ambidentate phosphorus ylides. Polyhedron 38, 131–136 (2012).Article 

Google Scholar 
van der Bondi, A. Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964).Article 

Google Scholar 
Morokuma, K. Molecular orbital studies of hydrogen bonds. III. C=O··· H-O hydrogen bond in H2CO···H2O and H2CO···2H2O. J. Phys. Chem. 55, 1236–1244 (1971).Article 

Google Scholar 
Ziegler, T., Rauk, A. & Baerends, A. J. Theor. Chim. Acta. (1977).Article 

Google Scholar 
Bayat, M. & Soltani, E. Stabilization of group 14 tetrylene compounds by N-heterocyclic carbene: A theoretical study. Polyhedron 123, 39–46 (2017).Article 

Google Scholar 
Bayat, M. & Hatami, M. Nature of the metal–ligand bond in some [(CO)4M←BIIM (R)]{M= Cr, Mo, W; R= H, F, Cl, Br} complexes: A theoretical study. Polyhedron 110, 46–54 (2016).Article 

Google Scholar 
Sabounchei, S. et al. A new Pd (II) complex of a sulfur ylide; Synthesis, X-ray characterization, theoretical study and catalytic activity toward the Suzuki-Miyaura reaction. Polyhedron 117, 273–282 (2016).Article 

Google Scholar 
Frenking, G. et al. Towards a rigorously defined quantum chemical analysis of the chemical bond in donor–acceptor complexes. Coord. Chem. Rev. 238, 55–82 (2003).Article 

Google Scholar 
Lein, M. & Frenking, G. in Theory and Applications of Computational Chemistry 291–372 (Elsevier, 2005).Bayat, M. & Kamali, S. Computational landscape of the formation and nature of bond in the “1+1” versus “1+2” nano-sized complexes of some adducts of N-heterocyclic carbenes (NHC) with heavy elements of group II (Ca, Sr, Ba) metallocenes. J. Mol. Liq. 222, 953–962 (2016).Article 

Google Scholar 
Aidi, M. et al. Coordination chemistry of some new Mn(II), Cd(II) and Zn(II) macrocyclic Schiff base complexes containing a homopiperazine head unit. Spectral, X-ray crystal structural, theoretical studies and anticancer activity. Inorganica Chim. Acta 490, 294–302 (2019).Article 

Google Scholar 
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. & Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).Article 
ADS 

Google Scholar 
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. A: Found. Adv 71, 3–8 (2015).Article 
ADS 

Google Scholar 
Sheldrick, G. M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71, 3–8 (2015).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. https://doi.org/10.1063/1.2370993 (2006).Article 
PubMed 

Google Scholar 
Wang, Y., Jin, X., Yu, H. S., Truhlar, D. G. & He, X. Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics. Proc. Natl. Acad. Sci. 114, 8487–8492 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).Article 

Google Scholar 
Wang, Y., Verma, P., Jin, X., Truhlar, D. G. & He, X. Revised M06 density functional for main-group and transition-metal chemistry. Proc. Natl. Acad. Sci. 115, 10257–10262 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Austin, A. et al. A density functional with spherical atom dispersion terms. J. Chem. Theory Comput. 8, 4989–5007 (2012).Article 
PubMed 

Google Scholar 
Autschbach, J., Ziegler, T., van Gisbergen, S. J. & Baerends, E. J. Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules. J. Chem. Phys. 116, 6930–6940 (2002).Article 
ADS 

Google Scholar 
Barone, V. et al. Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments. Phys. Chem. Chem. Phys. 14, 12404–12422 (2012).Article 
PubMed 

Google Scholar 
Frisch, M. et al. Gaussian 09, Revision a. 02, 200, gaussian. Inc., Wallingford, CT 271 (2009).Weinhold, F., Landis, C. & Glendening, E. What is NBO analysis and how is it useful?. Int. Rev. Phys. Chem. 35, 399–440 (2016).Article 

Google Scholar 
Baerends, E.J. et al. ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. ADF. Available online: http://www.scm.com (accessed on 20 April 2020) (2014).Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharma. Anal. 6, 71–79 (2016).Article 

Google Scholar 

Hot Topics

Related Articles